閾值與平滑處理


灰度圖

import cv2 #opencv讀取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB
%matplotlib inline 

img=cv2.imread('cat.jpg')
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
img_gray.shape

 

圖像閾值

ret, dst = cv2.threshold(src, thresh, maxval, type)

  • src: 輸入圖,只能輸入單通道圖像,通常來說為灰度圖
  • dst: 輸出圖
  • thresh: 閾值
  • maxval: 當像素值超過了閾值(或者小於閾值,根據type來決定),所賦予的值
  • type:二值化操作的類型,包含以下5種類型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

  • cv2.THRESH_BINARY 超過閾值部分取maxval(最大值),否則取0

  • cv2.THRESH_BINARY_INV THRESH_BINARY的反轉
  • cv2.THRESH_TRUNC 大於閾值部分設為閾值,否則不變
  • cv2.THRESH_TOZERO 大於閾值部分不改變,否則設為0
  • cv2.THRESH_TOZERO_INV THRESH_TOZERO的反轉
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)

titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

 

圖像平滑

img = cv2.imread('lenaNoise.png')

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 均值濾波
# 簡單的平均卷積操作
blur = cv2.blur(img, (3, 3))

cv2.imshow('blur', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 方框濾波
# 基本和均值一樣,可以選擇歸一化,False越界會產生高亮圖
box = cv2.boxFilter(img,-1,(3,3), normalize=True)  

cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 高斯濾波
# 高斯模糊的卷積核里的數值是滿足高斯分布,相當於更重視中間的
aussian = cv2.GaussianBlur(img, (5, 5), 1)  

cv2.imshow('aussian', aussian)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 中值濾波
# 相當於用中值代替
median = cv2.medianBlur(img, 5)  # 中值濾波

cv2.imshow('median', median)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 展示所有的
res = np.hstack((blur,aussian,median))
#print (res)
cv2.imshow('median vs average', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM