統計學(四)——python實現正態分布


正態分布(Normaldistribution)

  也稱“常態分布”,又名高斯分布(Gaussiandistribution)

  最早由A.棣莫弗在求二項分布的漸近公式中得到。C.F.高斯在研究測量誤差時從另一個角度導出了它。P.S.拉普拉斯和高斯研究了它的性質。是一個在數學、物理及工程等領域都非常重要的概率分布,在統計學的許多方面有着重大的影響力。

  正態曲線呈鍾型,兩頭低,中間高,左右對稱因其曲線呈鍾形,因此人們又經常稱之為鍾形曲線。

  若隨機變量X服從一個數學期望為μ、方差為σ^2的正態分布,記為N(μ,σ^2)

其概率密度函數為正態分布的期望值μ決定了其位置,其標准差σ決定了分布的幅度。當μ=0,σ=1時的正態分布是標准正態分布。其概率密度函數為:

我們通常所說的標准正態分布是的正態分布:

 

# -*- coding:utf-8 -*-
# Python實現正態分布
# 繪制正態分布概率密度函數
import numpy as np
import matplotlib.pyplot as plt
import math

u = 0  # 均值μ
u01 = -2
sig = math.sqrt(0.2)  # 標准差δ

x = np.linspace(u - 3 * sig, u + 3 * sig, 50)
y_sig = np.exp(-(x - u) ** 2 / (2 * sig ** 2)) / (math.sqrt(2 * math.pi) * sig)
print(x)
print("=" * 20)
print(y_sig)
plt.plot(x, y_sig, "r-", linewidth=2)
plt.grid(True)
plt.show()

 

概率密度函數

 

# Python實現正態分布
# 繪制正態分布概率密度函數
import math
import numpy as np
import matplotlib.pyplot as plt

u = 0 # 均值μ
u01 = -2
sig = math.sqrt(0.2) # 標准差δ
sig01 = math.sqrt(1)
sig02 = math.sqrt(5)
sig_u01 = math.sqrt(0.5)
x = np.linspace(u - 3*sig, u + 3*sig, 50)
x_01 = np.linspace(u - 6 * sig, u + 6 * sig, 50)
x_02 = np.linspace(u - 10 * sig, u + 10 * sig, 50)
x_u01 = np.linspace(u - 10 * sig, u + 1 * sig, 50)
y_sig = np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig)
y_sig01 = np.exp(-(x_01 - u) ** 2 /(2* sig01 **2))/(math.sqrt(2*math.pi)*sig01)
y_sig02 = np.exp(-(x_02 - u) ** 2 / (2 * sig02 ** 2)) / (math.sqrt(2 * math.pi) * sig02)
y_sig_u01 = np.exp(-(x_u01 - u01) ** 2 / (2 * sig_u01 ** 2)) / (math.sqrt(2 * math.pi) * sig_u01)
plt.plot(x, y_sig, "r-", linewidth=2)
plt.plot(x_01, y_sig01, "g-", linewidth=2)
plt.plot(x_02, y_sig02, "b-", linewidth=2)
plt.plot(x_u01, y_sig_u01, "m-", linewidth=2)
# plt.plot(x, y, 'r-', x, y, 'go', linewidth=2,markersize=8)
plt.grid(True)
plt.show()

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM