階乘函數(factorial)——結果在整型范圍內的階乘計算


定義:

在數學中,正整數的階乘(英語:factorial)是所有小於及等於該數的正整數的積,計為n!,例如5的階乘計為5!,其值為120:

\[5!=5\times 4\times 3\times 2\times 1=120\,. \]

並定義,1的階乘1!為1、0的階乘0!亦為1,其中,0的階乘表示一個空積

普遍方法實現階乘

int factorial(int num)
{
	int sum = 1;
	for (int i = 1; i <= num; i++)
		sum *= i;
	return sum;
}

使用遞歸的思想實現階乘

int factorial(int n)
{
	int sum = 1;
	return n == 1? sum = 1: n * factorial(n - 1);
}

使用迭代思想實現階乘

int factorial(int n)
{
	int result = 1;

	for (; n > 1; n--)
		result *= n;

	return result;
}


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM