最短路徑問題(python實現)


解決最短路徑問題:(如下三種算法)

(1)迪傑斯特拉算法(Dijkstra算法)
(2)弗洛伊德算法(Floyd算法)
(3)SPFA算法

 

第一種算法:

Dijkstra算法

廣度優先搜索解決賦權有向圖或者無向圖的單源最短路徑問題.是一種貪心的策略

算法的思路

聲明一個數組dis來保存源點到各個頂點的最短距離和一個保存已經找到了最短路徑的頂點的集合:T,
初始時,原點s的路徑權重被賦為0(dis[s]=0)。若對於頂點s存在能直接到達的邊(s,m),則把dis[m]設為w(s, m),
同時把所有其他(s不能直接到達的)頂點的路徑長度設為無窮大。初始時,集合T只有頂點s。
然后,從dis數組選擇最小值,則該值就是源點s到該值對應的頂點的最短路徑,並且把該點加入到T中,OK,此時完成一個頂點,
再看看新加入的頂點是否可以到達其他頂點並且看看通過該頂點到達其他點的路徑長度是否比源點直接到達短,
如果是,那么就替換這些頂點在dis中的值,然后,又從dis中找出最小值,重復上述動作,直到T中包含了圖的所有頂點。

原創鏈接(詳細圖解):https://blog.csdn.net/qq_35644234/article/details/60870719

 

第二種算法:

Floyd算法

原理:

Floyd算法(弗洛伊德算法)是一種在有向圖中求最短路徑的算法。它是一種求解有向圖中點與點之間最短路徑的算法。
用在擁有負權值的有向圖中求解最短路徑(不過不能包含負權回路)

流程:

有向圖中的每一個節點X,對於圖中過的2點A和B,
如果有Dis(AX)+ Dis(XB)< Dis(AB),那么使得Dis(AB)=Dis(AX)+Dis(XB)。
當所有的節點X遍歷完后,AB的最短路徑就求出來了。

 

原創圖解(詳細圖解):https://blog.csdn.net/qq_35644234/article/details/60875818

示例一:

 1 #-*- coding:utf-8 -*-
 2 #python實現Floyd算法
 3 
 4 N = 4
 5 _=float('inf')      #無窮大
 6 graph = [[ 0, 2, 6, 4],[ _, 0, 3, _],[ 7, _, 0, 1],[ 5, _,12, 0]]
 7 path = [[-1,-1,-1,-1],[-1,-1,-1,-1],[-1,-1,-1,-1],[-1,-1,-1,-1]]        #記錄路徑,最后一次經過的點
 8 
 9 def back_path(path,i,j):            #遞歸回溯
10     while(-1 != path[i][j]):
11         back_path(path,i,path[i][j])
12         back_path(path,path[i][j],j)
13         print path[i][j],
14         return;
15     return;
16 
17 print "Graph:\n",graph
18 for k in range(N):
19     for i in range(N):
20         for j in range(N):
21             if graph[i][j] > graph[i][k] + graph[k][j]:
22                 graph[i][j] = graph[i][k] + graph[k][j]
23                 path[i][j] = k
24 print "Shortest distance:\n",graph
25 print "Path:\n",path
26 print "Points pass-by:"
27 for i in range(N):
28     for j in range(N):
29         print "%d -> %d:" % (i,j),
30         back_path(path,i,j)
31         print "\n",

示例二:

#!usr/bin/env python
#encoding:utf-8
'''
功能:使用floyd算法求最短路徑距離
'''

import random
import time

def random_matrix_genetor(vex_num=10):
    '''
    隨機圖頂點矩陣生成器
    輸入:頂點個數,即矩陣維數
    '''
    data_matrix=[]
    for i in range(vex_num):
        one_list=[]
        for j in range(vex_num):
            one_list.append(random.randint(1, 100))
        data_matrix.append(one_list)
    return data_matrix

def floyd(data_matrix):
    '''
    輸入:原數據矩陣,即:一個二維數組
    輸出:頂點間距離
    '''
    dist_matrix=[]
    path_matrix=[]
    vex_num=len(data_matrix)  
    for h in range(vex_num):
        one_list=['N']*vex_num
        path_matrix.append(one_list)
        dist_matrix.append(one_list)
    for i in range(vex_num):
        for j in range(vex_num):
            dist_matrix=data_matrix
            path_matrix[i][j]=j
    for k in range(vex_num):
        for i in range(vex_num):
            for j in range(vex_num):
                if dist_matrix[i][k]=='N' or dist_matrix[k][j]=='N':
                    temp='N'
                else:
                    temp=dist_matrix[i][k]+dist_matrix[k][j]
                if dist_matrix[i][j]>temp:
                    dist_matrix[i][j]=temp
                    path_matrix[i][j]=path_matrix[i][k]
    return dist_matrix, path_matrix

def main_test_func(vex_num=10):
    '''
    主測試函數
    '''
    data_matrix=random_matrix_genetor(vex_num)
    dist_matrix, path_matrix=floyd(data_matrix)
    for i in range(vex_num):
        for j in range(vex_num):
            print '頂點'+str(i)+'----->'+'頂點'+str(j)+'最小距離為:', dist_matrix[i][j]

if __name__ == '__main__':
    data_matrix=[['N',1,'N',4],[1,'N',2,'N'],['N',2,'N',3],[4,'N',3,'N']]
    dist_matrix, path_matrix=floyd(data_matrix)
    print dist_matrix
    print path_matrix
 
    time_list=[]
 
    print '------------------------------節點數為10測試情況------------------------------------'
    start_time0=time.time()
    main_test_func(10)
    end_time0=time.time()
    t1=end_time0-start_time0
    time_list.append(t1)
    print '節點數為10時耗時為:', t1
 
    print '------------------------------節點數為100測試情況------------------------------------'
    start_time1=time.time()
    main_test_func(100)
    end_time1=time.time()
    t2=end_time1-start_time1
    time_list.append(t2)
    print '節點數為100時耗時為:', t2
 
    print '------------------------------節點數為1000測試情況------------------------------------'
    start_time1=time.time()
    main_test_func(1000)
    end_time1=time.time()
    t3=end_time1-start_time1
    time_list.append(t3)
    print '節點數為100時耗時為:', t3
 
    print '--------------------------------------時間消耗情況為:--------------------------------'
    for one_time in time_list:
        print one_time

示例三:

import numpy as np
Max     = 100
v_len   = 4
edge    = np.mat([[0,1,Max,4],[Max,0,9,2],[3,5,0,8],[Max,Max,6,0]])
A       = edge[:]
path    = np.zeros((v_len,v_len))
 
 
def Folyd():
    for i in range(v_len):
        for j in range(v_len):
            if(edge[i,j] != Max and edge[i,j] != 0):
                path[i][j] = i
 
    print 'init:'
    print A,'\n',path
    for a in range(v_len):
        for b in range(v_len):
            for c in range(v_len):
                if(A[b,a]+A[a,c]<A[b,c]):
                    A[b,c] = A[b,a]+A[a,c]
                    path[b][c] = path[a][c]
    print 'result:'            
    print A,'\n',path
                
 
if __name__ == "__main__":
    Folyd()

 

 第三種算法:

SPFA算法是求解單源最短路徑問題的一種算法,由理查德·貝爾曼(Richard Bellman) 和 萊斯特·福特 創立的。有時候這種算法也被稱為 Moore-Bellman-Ford 算法,因為 Edward F. Moore 也為這個算法的發展做出了貢獻。它的原理是對圖進行V-1次松弛操作,得到所有可能的最短路徑。

其優於迪科斯徹算法的方面是邊的權值可以為負數、實現簡單,缺點是時間復雜度過高,高達 O(VE)。但算法可以進行若干種優化,提高了效率。

思路:

我們用數組dis記錄每個結點的最短路徑估計值,用鄰接表或鄰接矩陣來存儲圖G。我們采取的方法是動態逼近法:設立一個先進先出的隊列用來保存待優化的結點,優化時每次取出隊首結點u,並且用u點當前的最短路徑估計值對離開u點所指向的結點v進行松弛操作,如果v點的最短路徑估計值有所調整,且v點不在當前的隊列中,就將v點放入隊尾。這樣不斷從隊列中取出結點來進行松弛操作,直至隊列空為止。

原文:https://blog.csdn.net/qq_35644234/article/details/61614581


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM