codeforces 1006 F(折半搜索)


F. Xor-Paths
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

There is a rectangular grid of size n×mn×m. Each cell has a number written on it; the number on the cell (i,ji,j) is ai,jai,j. Your task is to calculate the number of paths from the upper-left cell (1,11,1) to the bottom-right cell (n,mn,m) meeting the following constraints:

  • You can move to the right or to the bottom only. Formally, from the cell (i,ji,j) you may move to the cell (i,j+1i,j+1) or to the cell (i+1,ji+1,j). The target cell can't be outside of the grid.
  • The xor of all the numbers on the path from the cell (1,11,1) to the cell (n,mn,m) must be equal to kk (xor operation is the bitwise exclusive OR, it is represented as '^' in Java or C++ and "xor" in Pascal).

Find the number of such paths in the given grid.

Input

The first line of the input contains three integers nn, mm and kk (1n,m201≤n,m≤20, 0k10180≤k≤1018) — the height and the width of the grid, and the number kk.

The next nn lines contain mm integers each, the jj-th element in the ii-th line is ai,jai,j (0ai,j10180≤ai,j≤1018).

Output

Print one integer — the number of paths from (1,11,1) to (n,mn,m) with xor sum equal to kk.

Examples
input
Copy
3 3 11
2 1 5
7 10 0
12 6 4
output
Copy
3
input
Copy
3 4 2
1 3 3 3
0 3 3 2
3 0 1 1
output
Copy
5
input
Copy
3 4 1000000000000000000
1 3 3 3
0 3 3 2
3 0 1 1
output
Copy
0
Note

All the paths from the first example:

  • (1,1)(2,1)(3,1)(3,2)(3,3)(1,1)→(2,1)→(3,1)→(3,2)→(3,3);
  • (1,1)(2,1)(2,2)(2,3)(3,3)(1,1)→(2,1)→(2,2)→(2,3)→(3,3);
  • (1,1)(1,2)(2,2)(3,2)(3,3)(1,1)→(1,2)→(2,2)→(3,2)→(3,3).

All the paths from the second example:

  • (1,1)(2,1)(3,1)(3,2)(3,3)(3,4)(1,1)→(2,1)→(3,1)→(3,2)→(3,3)→(3,4);
  • (1,1)(2,1)(2,2)(3,2)(3,3)(3,4)(1,1)→(2,1)→(2,2)→(3,2)→(3,3)→(3,4);
  • (1,1)(2,1)(2,2)(2,3)(2,4)(3,4)(1,1)→(2,1)→(2,2)→(2,3)→(2,4)→(3,4);
  • (1,1)(1,2)(2,2)(2,3)(3,3)(3,4)(1,1)→(1,2)→(2,2)→(2,3)→(3,3)→(3,4);
  • (1,1)(1,2)(1,3)(2,3)(3,3)(3,4)(1,1)→(1,2)→(1,3)→(2,3)→(3,3)→(3,4)

 

/*
暴搜2^(n+m)
折半搜索 
*/
#include<bits/stdc++.h>

#define N 27
#define ll long long

using namespace std;
ll n,m,k,ans,flag;
ll a[N][N];
map<ll,ll>M[N][N];

inline ll read()
{
     ll x=0,f=1;char c=getchar();
     while(c>'9'||c<'0'){if(x=='-')f=-1;c=getchar();}
     while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
     return x*f;
}

void dfs(int dep,int x,int y,ll sta)
{
    if(x<1 || x>n || y<1 || y>m) return;
    if(!flag) sta^=a[x][y];
    if(x+y==dep)
    {
        if(!flag){M[x][y][sta]++;return;}
        else{ans+=M[x][y][k^sta];return;}
    }
    if(!flag){
        dfs(dep,x+1,y,sta);dfs(dep,x,y+1,sta);
    }
    else{
        sta^=a[x][y];
        dfs(dep,x-1,y,sta);dfs(dep,x,y-1,sta);
    }
}

int main()
{
    n=read();m=read();k=read();
    for(int i=1;i<=n;i++) for(int j=1;j<=m;j++)
    a[i][j]=read();
    flag=0;dfs((n+m+2)/2,1,1,0);
    flag=1;dfs((n+m+2)/2,n,m,0);
    printf("%lld\n",ans);
    return 0;
}

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM