1、什么是邊緣模型
圖1.1
連續二維邊緣模型如圖1.1所示,其中h1為背景灰度值,h2為目標灰度值,l為實際邊緣點到原點的歸一化距離,θ為邊緣法線方向與x軸的夾角,q[-$\pi $/2,$\pi $/2]。
2、空間矩法(spatial-gray moment,SGM)
二階連續函數fm(x,y)的p+q階空間矩定義為
${M_{pq}} = \int\!\!\!\int {x^p}{y^q}{f_m}\left( {x,y} \right)dxdy$
數字化圖像的p+q階空間矩定義為
${M_{pq}} = \sum \sum {x^p}{y^q}{f_m}\left( {x,y} \right)$
邊緣模型參數計算公式:
\[\left\{ \begin{array}{l}
\theta = \arctan \left( {{M_{01}}/{M_{10}}} \right)\\
l = \left( {4{{M'}_{20}} - {{M'}_{00}}} \right)/\left( {3{{M'}_{10}}} \right)\\
k = \left( {3{{M'}_{10}}} \right)/\left[ {2\sqrt {{{\left( {1 - {l^2}} \right)}^3}} } \right]\\
h = \left[ {2{{M'}_{00}} - k\left( {\pi - 2\arcsin l - 2l\sqrt {1 - {l^2}} } \right)} \right]/2\pi
\end{array} \right.\]
式中,k為目標灰度和背景灰度的對比度,數值為h1與h2之差,各階空間矩的數值由各自的矩模板與圖像灰度值卷積得到。
3、Zernike正交矩法(Zernike orthogonal moment,ZOM)
二階連續函數fm(x,y)的p+q階的ZOM定義為
${Z_{pq}} = \frac{{p + 1}}{\pi }\int\!\!\!\int f\left( {x,y} \right){V_{pq}}\left( {\rho ,\theta } \right)dxdy$
邊緣模型參數計算公式:
\[\left\{ \begin{array}{l}
\theta = \arctan \left( {\frac{{{\rm{Im}}\left( {{Z_{11}}} \right)}}{{{\rm{Re}}\left( {{Z_{11}}} \right)}}} \right)\\
l = {Z_{20}}/{{Z'}_{11}}\\
k = \left( {3{{Z'}_{11}}} \right)/\left[ {2\sqrt {{{\left( {1 - {l^2}} \right)}^3}} } \right]\\
h = \left[ {{{Z'}_{00}} - k\left( {\pi /2 - \arcsin l - l\sqrt {1 - {l^2}} } \right)} \right]/\pi
\end{array} \right.\]
4、正交傅里葉-馬林矩法(orthogonal Fourier-Mellin moment,OFMM)
二階連續函數fm(x,y)的p+q階的OFMM定義為
${\emptyset _{pq}} = \frac{{p + 1}}{\pi }\mathop \sum \limits_{s = 0}^p {\alpha _{ps}}\mathop \int\!\!\!\int \limits_{ - \infty }^{ + \infty } f\left( {x,y} \right){\left( {x + jy} \right)^{\frac{{s - p}}{2}}}{(x - jy)^{\frac{{s + p}}{2}}}dxdy$
邊緣模型參數計算公式:
\[\left\{ \begin{array}{l}
\theta = \arctan \left[ { - \frac{{{\rm{Im}}\left( {2({\phi _{01}} + {\phi _{11}})} \right)}}{{{\rm{Re}}\left( {2({\phi _{01}} + {\phi _{11}})} \right)}}} \right]\\
l = \frac{3}{5}\left( {\frac{{4{\phi _{10}} + {\phi _{20}}}}{{2{{\phi '}_{01}} + {{\phi '}_{11}}}}} \right)\\
k = \left( {2{{\phi '}_{01}} + {{\phi '}_{11}}} \right)/\left[ {2\sqrt {{{\left( {1 - {l^2}} \right)}^3}} } \right]\\
h = \left[ {{{\phi '}_{00}} - k\left( {\arcsin \sqrt {1 - {l^2}} - l\sqrt {1 - {l^2}} } \right)} \right]/\pi
\end{array} \right.\]
由於OFMM和ZOM法所求的q和l相同,而最終亞像素級邊緣定位結果僅僅與q和l有關,因此,OFMM和ZOM法的亞像素級邊緣定位結果完全一致,另外三種方法獲得的邊緣角度q相同。
【 結束 】