畫出神經網絡結構圖


學習資料:

使用 Viznet 畫出神經網絡結構圖


'''

'''

import numpy as np
from viznet import connecta2a, node_sequence, NodeBrush, EdgeBrush, DynamicShow


def draw_feed_forward(ax, num_node_list):
    '''
    draw a feed forward neural network.

    Args:
        num_node_list (list<int>): 每層節點數組成的列表
    '''
    num_hidden_layer = len(num_node_list) - 2  # 隱藏層數
    token_list = ['\sigma^z'] + \
        ['y^{(%s)}' % (i + 1) for i in range(num_hidden_layer)] + ['\psi']
    kind_list = ['nn.input'] + ['nn.hidden'] * num_hidden_layer + ['nn.output']
    radius_list = [0.3] + [0.2] * num_hidden_layer + [0.3]   # 半徑大小
    y_list = - 1.5 * np.arange(len(num_node_list))  # 每一層節點所在的位置的縱軸坐標,全取負值說明網絡是自頂而下的
    
    seq_list = []
    for n, kind, radius, y in zip(num_node_list, kind_list, radius_list, y_list):
        b = NodeBrush(kind, ax)
        seq_list.append(node_sequence(b, n, center=(0, y)))

    eb = EdgeBrush('-->', ax)
    for st, et in zip(seq_list[:-1], seq_list[1:]):
        connecta2a(st, et, eb)
    #for i, layer_nodes in enumerate(seq_list):
        #[node.text('$z_%i^{(%i)}$'%(j, i), 'center', fontsize=16) for j, node in enumerate(layer_nodes)]
    return seq_list


def real_bp():
    with DynamicShow((6, 6), '_feed_forward.png') as d:  # 隱藏坐標軸
        seq_list = draw_feed_forward(d.ax, num_node_list=[5, 4, 1])
        for i, layer_nodes in enumerate(seq_list):
            [node.text('$z_{%i}^{(%i)}$'%(j, i), 'center', fontsize=16) for j, node in enumerate(layer_nodes)]


if __name__ == '__main__':
    real_bp()

為了節省內存,最好將圖片保存為 .svg 格式。

在線生成卷積網絡結構圖

這個操作起來十分簡單,只需要輸入如下卷積神經網絡結構說明:

# Some example

input(28, 28, 1)
conv(24, 24, 8)
relu(24, 24, 8)
pool(12, 12, 8)
conv(10, 10, 16)
relu(10, 10, 16)
pool(4, 4, 16)
fullyconn(1, 1, 10)
softmax(1, 1, 10)

便可生成對應的網絡結構,即:

其他方式

可以參考我的博文:2 使用 NetworkX 畫神經網絡


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM