線性回歸代碼實現(matlab)


1 代價函數實現(cost function)

 

function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
%   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
%   parameter for linear regression to fit the data points in X and y

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0; 

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
%               You should set J to the cost.

predictions = X * theta;
sqrErrors = (predictions-y) .^ 2;

J = 1/(2*m) * sum(sqrErrors);



% =========================================================================

end

  1.1 詳細解釋

轉化成了向量(矩陣)形式,如果用其他的語言,用循環應該可以實現

predictions = X * theta;        % 這里的大X是矩陣

  

 

sqrErrors = (predictions-y) .^ 2;

  

2 梯度下降

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
%   theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by 
%   taking num_iters gradient steps with learning rate alpha

% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);

for iter = 1:num_iters

    % ====================== YOUR CODE HERE ======================
    % Instructions: Perform a single gradient step on the parameter vector
    %               theta. 
    %
    % Hint: While debugging, it can be useful to print out the values
    %       of the cost function (computeCost) and gradient here.
    %
    theta_temp = theta;
    for j = 1:size(X, 2)
        theta_temp(j) = theta(j)-alpha*(1/m)*(X*theta - y)' * X(:, j);
    end
    theta = theta_temp;





    % ============================================================

    % Save the cost J in every iteration    
    J_history(iter) = computeCost(X, y, theta);

end

end

  2.1 解釋

J_history = zeros(num_iters, 1);

 

theta_temp = theta;  

  把theta存起來。保證同時更新

for j = 1:size(X, 2)
        theta_temp(j) = theta(j)-alpha*(1/m)*(X*theta - y)' * X(:, j);
    end

  更新theta    

(X*theta - y)' 是轉置

(X*theta - y)' * X(:, j);

  這步是求和,相當於sum

 

  J_history(iter) = computeCost(X, y, theta);

記錄代價函數

因為隨着迭代次數的增加,代價函數收斂。theta也就確定了。

代價函數的是降低,同時theta也在變化

到后面代價函數的值已經不變化了。到收斂了

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM