SVM有很多種實現,但是本章只關注其中最流行的一種實現,即序列最小化(SMO)算法
在此之后,我們將介紹如何使用一種稱為核函數的方式將SVM擴展到更多的數據集上
基於最大間隔的分割數據
優點:泛化錯誤率低,計算開銷不大,結果易解釋
缺點:對參數調節和核函數的選擇敏感,原始分類器不加修改僅適用於處理二類問題
適用數據類型:數值型和標稱型數據
尋找最大間隔:
分割超平面的形式可以寫成W^T *x+b,要計算點A到分割超平面的距離,就必須給出點
到分割面的法線或垂線的長度,該值為|w^T+b|/||w||.這里的常數b類似於Logistic回
歸中的結局w0 .
SVM的類別標簽采用的是1和-1,而不是0和1,這是為什么呢?
這是由於-1和+1僅僅相差一個符號,方便數學上的處理,實質上是和目標函數的選取(算法的判別函數)有關。
當計算數據點到分割面的距離並確定分割面的放置位置時,間隔通過label*(W^T *x+b)來計算,這是就能體
現出-1和+1的好處了。即只要判斷正確,判別條件總是大於1.
至此,一切都很完美,但是這里有個假設:數據必須100%線性可分。目前為止,物品們直到幾乎所有數據
都不那么“干凈”。這時,我們就可以通過引入所謂的松弛i按量,來允許有些數據點可以處於分割面的錯誤一側。
SVM應用的一般框架
SVM的一般流程
(1)收集數據:可以適用任意方法
(2)准備數據:需要數值型數據
(3)分析數據:有助於可視化分割 超平面
(4)訓練算法:SVM的大部分時間都源自訓練,該過程主要實現兩個參數的調優
(5)測試算法:十分簡單的計算過程就可以實現
(6)使用算法:幾乎所有分類問題都可以使用SVM,值得一提的是,SVM本身是一個二類分類器,對多類問題
應用SVM需要對代碼做一些修改。
SMO表示序列的最小優化,這些小優化問題往往容易為蟹,並且對他們進行順序求解的結果將與他們作為整
體來求解的結果完全一致。在結果完全相同時,SMO算法的求解時間最短。
SMO算法的求解目標是求一系列的alpha和b,一旦求出alpha,就很容易計算出權重向量w並得到分割超平面
SMO算法的工作原理是:每次循環中選擇兩個alpha進行優化處理。一旦找到一對合適的alpha,那么就增大
其中一個同時減小另一個。這里所謂的“合適”就是指兩個alpha必須符合一定的條件,條件之一就是這兩個
alpha必須要在間隔邊界之外,而其第二個條件則是這兩個alpha還沒有進行過區間化或者不再邊界上。
1 from numpy import * 2 from time import sleep 3 4 def loadDataSet(fileName): 5 dataMat = []; labelMat = [] 6 fr = open(fileName) 7 for line in fr.readlines(): 8 lineArr = line.strip().split('\t') 9 dataMat.append([float(lineArr[0]), float(lineArr[1])]) 10 labelMat.append(float(lineArr[2])) 11 return dataMat,labelMat 12 13 #i是第一個alpha的下標,m是所有alpha的數目。只要函數值不等於輸入值i,函數就會進行隨機選擇。 14 def selectJrand(i,m): 15 j=i #we want to select any J not equal to i 16 while (j==i): 17 j = int(random.uniform(0,m)) 18 return j 19 20 #該函數用於調整大於H或小於L的alpha值。 21 def clipAlpha(aj,H,L): 22 if aj > H: 23 aj = H 24 if L > aj: 25 aj = L 26 return aj 27 28 ''' 29 創建一個alpha向量並將其初始化為0向量 30 當迭代次數小於最大迭代次數時(外循環) 31 對數據集中的每個數據向量(內循環): 32 如果該數據向量可以被優化: 33 隨機選擇另外一個數據向量 34 同時優化這兩個向量 35 如果兩個向量都不能被優化,退出內循環 36 如果所有向量都沒被優化,增加迭代數目,繼續下一次循環 37 ''' 38 def smoSimple(dataMatIn, classLabels, C, toler, maxIter): 39 dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose() 40 b = 0; m,n = shape(dataMatrix) 41 alphas = mat(zeros((m,1))) 42 iter = 0 43 while (iter < maxIter): 44 alphaPairsChanged = 0 45 for i in range(m): 46 fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b 47 Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions 48 if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)): 49 j = selectJrand(i,m) 50 fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b 51 Ej = fXj - float(labelMat[j]) 52 alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy(); 53 if (labelMat[i] != labelMat[j]): 54 L = max(0, alphas[j] - alphas[i]) 55 H = min(C, C + alphas[j] - alphas[i]) 56 else: 57 L = max(0, alphas[j] + alphas[i] - C) 58 H = min(C, alphas[j] + alphas[i]) 59 if L==H: print("L==H"); continue 60 eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T 61 if eta >= 0: print("eta>=0"); continue 62 alphas[j] -= labelMat[j]*(Ei - Ej)/eta 63 alphas[j] = clipAlpha(alphas[j],H,L) 64 if (abs(alphas[j] - alphaJold) < 0.00001): print ("j not moving enough"); continue 65 alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j 66 #the update is in the oppostie direction 67 b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T 68 b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T 69 if (0 < alphas[i]) and (C > alphas[i]): b = b1 70 elif (0 < alphas[j]) and (C > alphas[j]): b = b2 71 else: b = (b1 + b2)/2.0 72 alphaPairsChanged += 1 73 print("iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) 74 if (alphaPairsChanged == 0): iter += 1 75 else: iter = 0 76 print ("iteration number: %d" % iter) 77 return b,alphas 78 79 def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space 80 m,n = shape(X) 81 K = mat(zeros((m,1))) 82 if kTup[0]=='lin': K = X * A.T #linear kernel 83 elif kTup[0]=='rbf': 84 for j in range(m): 85 deltaRow = X[j,:] - A 86 K[j] = deltaRow*deltaRow.T 87 K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab 88 else: raise NameError('Houston We Have a Problem -- \ 89 That Kernel is not recognized') 90 return K 91 92 #完整版的SMO的支持函數 93 class optStruct: 94 def __init__(self, dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters 95 self.X = dataMatIn 96 self.labelMat = classLabels 97 self.C = C 98 self.tol = toler 99 self.m = shape(dataMatIn)[0] 100 self.alphas = mat(zeros((self.m, 1))) 101 self.b = 0 102 self.eCache = mat(zeros((self.m, 2))) # first column is valid flag 103 self.K = mat(zeros((self.m, self.m))) 104 for i in range(self.m): 105 self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup) 106 107 #誤差緩存 108 def calcEk(oS, k): 109 fXk = float(multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b) 110 Ek = fXk - float(oS.labelMat[k]) 111 return Ek 112 113 #內循環中的啟發式方法 114 def selectJ(i, oS, Ei): # this is the second choice -heurstic, and calcs Ej 115 maxK = -1; 116 maxDeltaE = 0; 117 Ej = 0 118 oS.eCache[i] = [1, Ei] # set valid #choose the alpha that gives the maximum delta E 119 validEcacheList = nonzero(oS.eCache[:, 0].A)[0] 120 if (len(validEcacheList)) > 1: 121 for k in validEcacheList: # loop through valid Ecache values and find the one that maximizes delta E 122 if k == i: continue # don't calc for i, waste of time 123 Ek = calcEk(oS, k) 124 deltaE = abs(Ei - Ek) 125 #選擇具有最大步長的j 126 if (deltaE > maxDeltaE): 127 maxK = k; 128 maxDeltaE = deltaE; 129 Ej = Ek 130 return maxK, Ej 131 else: # in this case (first time around) we don't have any valid eCache values 132 j = selectJrand(i, oS.m) 133 Ej = calcEk(oS, j) 134 return j, Ej 135 136 137 def updateEk(oS, k): # after any alpha has changed update the new value in the cache 138 Ek = calcEk(oS, k) 139 oS.eCache[k] = [1, Ek] 140 141 def innerL(i, oS): 142 Ei = calcEk(oS, i) 143 if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)): 144 j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand 145 alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy(); 146 if (oS.labelMat[i] != oS.labelMat[j]): 147 L = max(0, oS.alphas[j] - oS.alphas[i]) 148 H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i]) 149 else: 150 L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C) 151 H = min(oS.C, oS.alphas[j] + oS.alphas[i]) 152 if L==H: print("L==H"); return 0 153 eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel 154 if eta >= 0: print ("eta>=0"); return 0 155 oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta 156 oS.alphas[j] = clipAlpha(oS.alphas[j],H,L) 157 updateEk(oS, j) #added this for the Ecache 158 if (abs(oS.alphas[j] - alphaJold) < 0.00001): print("j not moving enough"); return 0 159 oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j 160 updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction 161 b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j] 162 b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j] 163 if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1 164 elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2 165 else: oS.b = (b1 + b2)/2.0 166 return 1 167 else: return 0 168 169 def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #full Platt SMO 170 oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup) 171 iter = 0 172 entireSet = True; alphaPairsChanged = 0 173 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): 174 alphaPairsChanged = 0 175 if entireSet: #go over all 176 for i in range(oS.m): 177 alphaPairsChanged += innerL(i,oS) 178 print("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) 179 iter += 1 180 else:#go over non-bound (railed) alphas 181 nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] 182 for i in nonBoundIs: 183 alphaPairsChanged += innerL(i,oS) 184 print("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) 185 iter += 1 186 if entireSet: entireSet = False #toggle entire set loop 187 elif (alphaPairsChanged == 0): entireSet = True 188 print("iteration number: %d" % iter) 189 return oS.b,oS.alphas 190 191 def calcWs(alphas,dataArr,classLabels): 192 X = mat(dataArr); labelMat = mat(classLabels).transpose() 193 m,n = shape(X) 194 w = zeros((n,1)) 195 for i in range(m): 196 w += multiply(alphas[i]*labelMat[i],X[i,:].T) 197 return w 198 199 200 201 dataArr,labelArr=loadDataSet('testSet.txt') 202 b,alphas=smoP(dataArr,labelArr,0.6,0.001,40) 203 ws=calcWs(alphas,dataArr,labelArr) 204 print(ws)
