SVM python小樣例


SVM有很多種實現,但是本章只關注其中最流行的一種實現,即序列最小化(SMO)算法
在此之后,我們將介紹如何使用一種稱為核函數的方式將SVM擴展到更多的數據集上
基於最大間隔的分割數據
優點:泛化錯誤率低,計算開銷不大,結果易解釋
缺點:對參數調節和核函數的選擇敏感,原始分類器不加修改僅適用於處理二類問題
適用數據類型:數值型和標稱型數據
尋找最大間隔:
分割超平面的形式可以寫成W^T *x+b,要計算點A到分割超平面的距離,就必須給出點
到分割面的法線或垂線的長度,該值為|w^T+b|/||w||.這里的常數b類似於Logistic回
歸中的結局w0 .
SVM的類別標簽采用的是1和-1,而不是0和1,這是為什么呢?
這是由於-1和+1僅僅相差一個符號,方便數學上的處理,實質上是和目標函數的選取(算法的判別函數)有關。
當計算數據點到分割面的距離並確定分割面的放置位置時,間隔通過label*(W^T *x+b)來計算,這是就能體
現出-1和+1的好處了。即只要判斷正確,判別條件總是大於1.
至此,一切都很完美,但是這里有個假設:數據必須100%線性可分。目前為止,物品們直到幾乎所有數據
都不那么“干凈”。這時,我們就可以通過引入所謂的松弛i按量,來允許有些數據點可以處於分割面的錯誤一側。
SVM應用的一般框架
SVM的一般流程
(1)收集數據:可以適用任意方法
(2)准備數據:需要數值型數據
(3)分析數據:有助於可視化分割 超平面
(4)訓練算法:SVM的大部分時間都源自訓練,該過程主要實現兩個參數的調優
(5)測試算法:十分簡單的計算過程就可以實現
(6)使用算法:幾乎所有分類問題都可以使用SVM,值得一提的是,SVM本身是一個二類分類器,對多類問題
應用SVM需要對代碼做一些修改。
SMO表示序列的最小優化,這些小優化問題往往容易為蟹,並且對他們進行順序求解的結果將與他們作為整
體來求解的結果完全一致。在結果完全相同時,SMO算法的求解時間最短。
SMO算法的求解目標是求一系列的alpha和b,一旦求出alpha,就很容易計算出權重向量w並得到分割超平面
SMO算法的工作原理是:每次循環中選擇兩個alpha進行優化處理。一旦找到一對合適的alpha,那么就增大
其中一個同時減小另一個。這里所謂的“合適”就是指兩個alpha必須符合一定的條件,條件之一就是這兩個
alpha必須要在間隔邊界之外,而其第二個條件則是這兩個alpha還沒有進行過區間化或者不再邊界上。

  1 from numpy import *
  2 from time import sleep
  3 
  4 def loadDataSet(fileName):
  5     dataMat = []; labelMat = []
  6     fr = open(fileName)
  7     for line in fr.readlines():
  8         lineArr = line.strip().split('\t')
  9         dataMat.append([float(lineArr[0]), float(lineArr[1])])
 10         labelMat.append(float(lineArr[2]))
 11     return dataMat,labelMat
 12 
 13 #i是第一個alpha的下標,m是所有alpha的數目。只要函數值不等於輸入值i,函數就會進行隨機選擇。
 14 def selectJrand(i,m):
 15     j=i #we want to select any J not equal to i
 16     while (j==i):
 17         j = int(random.uniform(0,m))
 18     return j
 19 
 20 #該函數用於調整大於H或小於L的alpha值。
 21 def clipAlpha(aj,H,L):
 22     if aj > H:
 23         aj = H
 24     if L > aj:
 25         aj = L
 26     return aj
 27 
 28 '''
 29 創建一個alpha向量並將其初始化為0向量
 30 當迭代次數小於最大迭代次數時(外循環)
 31     對數據集中的每個數據向量(內循環):
 32     如果該數據向量可以被優化:
 33         隨機選擇另外一個數據向量
 34         同時優化這兩個向量
 35         如果兩個向量都不能被優化,退出內循環
 36 如果所有向量都沒被優化,增加迭代數目,繼續下一次循環
 37 '''
 38 def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
 39     dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
 40     b = 0; m,n = shape(dataMatrix)
 41     alphas = mat(zeros((m,1)))
 42     iter = 0
 43     while (iter < maxIter):
 44         alphaPairsChanged = 0
 45         for i in range(m):
 46             fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
 47             Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
 48             if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
 49                 j = selectJrand(i,m)
 50                 fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
 51                 Ej = fXj - float(labelMat[j])
 52                 alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
 53                 if (labelMat[i] != labelMat[j]):
 54                     L = max(0, alphas[j] - alphas[i])
 55                     H = min(C, C + alphas[j] - alphas[i])
 56                 else:
 57                     L = max(0, alphas[j] + alphas[i] - C)
 58                     H = min(C, alphas[j] + alphas[i])
 59                 if L==H: print("L==H"); continue
 60                 eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
 61                 if eta >= 0: print("eta>=0"); continue
 62                 alphas[j] -= labelMat[j]*(Ei - Ej)/eta
 63                 alphas[j] = clipAlpha(alphas[j],H,L)
 64                 if (abs(alphas[j] - alphaJold) < 0.00001): print ("j not moving enough"); continue
 65                 alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
 66                                                                         #the update is in the oppostie direction
 67                 b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
 68                 b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
 69                 if (0 < alphas[i]) and (C > alphas[i]): b = b1
 70                 elif (0 < alphas[j]) and (C > alphas[j]): b = b2
 71                 else: b = (b1 + b2)/2.0
 72                 alphaPairsChanged += 1
 73                 print("iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
 74         if (alphaPairsChanged == 0): iter += 1
 75         else: iter = 0
 76         print ("iteration number: %d" % iter)
 77     return b,alphas
 78 
 79 def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
 80     m,n = shape(X)
 81     K = mat(zeros((m,1)))
 82     if kTup[0]=='lin': K = X * A.T   #linear kernel
 83     elif kTup[0]=='rbf':
 84         for j in range(m):
 85             deltaRow = X[j,:] - A
 86             K[j] = deltaRow*deltaRow.T
 87         K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
 88     else: raise NameError('Houston We Have a Problem -- \
 89     That Kernel is not recognized')
 90     return K
 91 
 92 #完整版的SMO的支持函數
 93 class optStruct:
 94     def __init__(self, dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters
 95         self.X = dataMatIn
 96         self.labelMat = classLabels
 97         self.C = C
 98         self.tol = toler
 99         self.m = shape(dataMatIn)[0]
100         self.alphas = mat(zeros((self.m, 1)))
101         self.b = 0
102         self.eCache = mat(zeros((self.m, 2)))  # first column is valid flag
103         self.K = mat(zeros((self.m, self.m)))
104         for i in range(self.m):
105             self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)
106 
107 #誤差緩存
108 def calcEk(oS, k):
109     fXk = float(multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b)
110     Ek = fXk - float(oS.labelMat[k])
111     return Ek
112 
113 #內循環中的啟發式方法
114 def selectJ(i, oS, Ei):  # this is the second choice -heurstic, and calcs Ej
115     maxK = -1;
116     maxDeltaE = 0;
117     Ej = 0
118     oS.eCache[i] = [1, Ei]  # set valid #choose the alpha that gives the maximum delta E
119     validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
120     if (len(validEcacheList)) > 1:
121         for k in validEcacheList:  # loop through valid Ecache values and find the one that maximizes delta E
122             if k == i: continue  # don't calc for i, waste of time
123             Ek = calcEk(oS, k)
124             deltaE = abs(Ei - Ek)
125             #選擇具有最大步長的j
126             if (deltaE > maxDeltaE):
127                 maxK = k;
128                 maxDeltaE = deltaE;
129                 Ej = Ek
130         return maxK, Ej
131     else:  # in this case (first time around) we don't have any valid eCache values
132         j = selectJrand(i, oS.m)
133         Ej = calcEk(oS, j)
134     return j, Ej
135 
136 
137 def updateEk(oS, k):  # after any alpha has changed update the new value in the cache
138     Ek = calcEk(oS, k)
139     oS.eCache[k] = [1, Ek]
140 
141 def innerL(i, oS):
142     Ei = calcEk(oS, i)
143     if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
144         j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
145         alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
146         if (oS.labelMat[i] != oS.labelMat[j]):
147             L = max(0, oS.alphas[j] - oS.alphas[i])
148             H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
149         else:
150             L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
151             H = min(oS.C, oS.alphas[j] + oS.alphas[i])
152         if L==H: print("L==H"); return 0
153         eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
154         if eta >= 0: print ("eta>=0"); return 0
155         oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
156         oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
157         updateEk(oS, j) #added this for the Ecache
158         if (abs(oS.alphas[j] - alphaJold) < 0.00001): print("j not moving enough"); return 0
159         oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
160         updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
161         b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
162         b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
163         if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
164         elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
165         else: oS.b = (b1 + b2)/2.0
166         return 1
167     else: return 0
168 
169 def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):    #full Platt SMO
170     oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
171     iter = 0
172     entireSet = True; alphaPairsChanged = 0
173     while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
174         alphaPairsChanged = 0
175         if entireSet:   #go over all
176             for i in range(oS.m):
177                 alphaPairsChanged += innerL(i,oS)
178                 print("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
179             iter += 1
180         else:#go over non-bound (railed) alphas
181             nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
182             for i in nonBoundIs:
183                 alphaPairsChanged += innerL(i,oS)
184                 print("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
185             iter += 1
186         if entireSet: entireSet = False #toggle entire set loop
187         elif (alphaPairsChanged == 0): entireSet = True
188         print("iteration number: %d" % iter)
189     return oS.b,oS.alphas
190 
191 def calcWs(alphas,dataArr,classLabels):
192     X = mat(dataArr); labelMat = mat(classLabels).transpose()
193     m,n = shape(X)
194     w = zeros((n,1))
195     for i in range(m):
196         w += multiply(alphas[i]*labelMat[i],X[i,:].T)
197     return w
198 
199 
200 
201 dataArr,labelArr=loadDataSet('testSet.txt')
202 b,alphas=smoP(dataArr,labelArr,0.6,0.001,40)
203 ws=calcWs(alphas,dataArr,labelArr)
204 print(ws)

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM