支持向量機是一種Margin,分類算法。基於不同的核函數,從而算出不同的決策邊界。受人的主觀影響較大。
數據集
鏈接:https://pan.baidu.com/s/1nHbYW2Xle7Pgiks3SIkUrw 提取碼:lyz2
代碼
#-*- coding: utf-8 -*- import numpy as np from scipy import io as spio from matplotlib import pyplot as plt from sklearn import svm def SVM(): '''data1——線性分類''' data1 = spio.loadmat('data1.mat') X = data1['X'] y = data1['y'] y = np.ravel(y) plot_data(X, y) model = svm.SVC(C=1.0, kernel='linear').fit(X, y) # 指定核函數為線性核函數 plot_decisionBoundary(X, y, model) # 畫決策邊界 '''data2——非線性分類''' data2 = spio.loadmat('data2.mat') X = data2['X'] y = data2['y'] y = np.ravel(y) plt = plot_data(X, y) plt.show() model = svm.SVC(gamma=100).fit(X, y) # gamma為核函數的系數,值越大擬合的越好 plot_decisionBoundary(X, y, model, class_='notLinear') # 畫決策邊界 # 作圖 def plot_data(X, y): plt.figure(figsize=(10, 8)) pos = np.where(y == 1) # 找到y=1的位置 neg = np.where(y == 0) # 找到y=0的位置 p1, = plt.plot(np.ravel(X[pos, 0]), np.ravel(X[pos, 1]), 'ro', markersize=8) p2, = plt.plot(np.ravel(X[neg, 0]), np.ravel(X[neg, 1]), 'g^', markersize=8) plt.xlabel("X1") plt.ylabel("X2") plt.legend([p1, p2], ["y==1", "y==0"]) return plt # 畫決策邊界 def plot_decisionBoundary(X, y, model, class_='linear'): plt = plot_data(X, y) # 線性邊界 if class_ == 'linear': w = model.coef_ b = model.intercept_ xp = np.linspace(np.min(X[:, 0]), np.max(X[:, 0]), 100) yp = -(w[0, 0] * xp + b) / w[0, 1] plt.plot(xp, yp, 'b-', linewidth=2.0) plt.show() else: # 非線性邊界 x_1 = np.transpose(np.linspace(np.min(X[:, 0]), np.max(X[:, 0]), 500).reshape(1, -1)) x_2 = np.transpose(np.linspace(np.min(X[:, 1]), np.max(X[:, 1]), 500).reshape(1, -1)) X1, X2 = np.meshgrid(x_1, x_2) vals = np.zeros(X1.shape) for i in range(X1.shape[1]): this_X = np.hstack((X1[:, i].reshape(-1, 1), X2[:, i].reshape(-1, 1))) vals[:, i] = model.predict(this_X) plt.contour(X1, X2, vals, [0, 1], color='blue') plt.show() if __name__ == "__main__": SVM()