一、FPGrowth算法理解
Spark.mllib 提供並行FP-growth算法,這個算法屬於關聯規則算法【關聯規則:兩不相交的非空集合A、B,如果A=>B,就說A=>B是一條關聯規則,常提及的{啤酒}-->{尿布}就是一條關聯規則】,經常用於挖掘頻度物品集。關於算法的介紹網上很多,這里不再贅述。主要搞清楚幾個概念:
1)支持度support(A => B) = P(AnB) = |A n B| / |N|,表示數據集D中,事件A和事件B共同出現的概率;
2)置信度confidence(A => B) = P(B|A) = |A n B| / |A|,表示數據集D中,出現事件A的事件中出現事件B的概率;
3)提升度lift(A => B) = P(B|A):P(B) = |A n B| / |A| : |B| / |N|,表示數據集D中,出現A的條件下出現事件B的概率和沒有條件A出現B的概率;
由上可以看出,支持度表示這條規則的可能性大小,而置信度表示由事件A得到事件B的可信性大小。
舉個列子:10000個消費者購買了商品,尿布1000個,啤酒2000個,同時購買了尿布和啤酒800個。
1)支持度:在所有項集中出現的可能性,項集同時含有,x與y的概率。尿布和啤酒的支持度為:800/10000=8%
2)置信度:在X發生的條件下,Y發生的概率。尿布-》啤酒的置信度為:800/1000=80%,啤酒-》尿布的置信度為:800/2000=40%
3)提升度:在含有x條件下同時含有Y的可能性(x->y的置信度)比沒有x這個條件下含有Y的可能性之比:confidence(尿布=> 啤酒)/概率(啤酒)) = 80%/(2000/10000) 。如果提升度=1,那就是沒啥關系這兩個
通過支持度和置信度可以得出強關聯關系,通過提升的,可判別有效的強關聯關系。
直接拿例子來說明問題。首先數據集如下:
r z h k p
z y x w v u t s
s x o n r
x z y m t s q e
z
x z y r q t p
二、代碼實現。在IDEA中建立Maven工程,然后本地模式調試代碼如下:
import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.mllib.fpm.AssociationRules; import org.apache.spark.mllib.fpm.FPGrowth; import org.apache.spark.mllib.fpm.FPGrowthModel; import java.util.Arrays; import java.util.List; public class FPDemo { public static void main(String[] args){ String data_path; //數據集路徑 double minSupport = 0.2;//最小支持度 int numPartition = 10; //數據分區 double minConfidence = 0.8;//最小置信度 if(args.length < 1){ System.out.println("<input data_path>"); System.exit(-1); } data_path = args[0]; if(args.length >= 2) minSupport = Double.parseDouble(args[1]); if(args.length >= 3) numPartition = Integer.parseInt(args[2]); if(args.length >= 4) minConfidence = Double.parseDouble(args[3]); SparkConf conf = new SparkConf().setAppName("FPDemo").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); //加載數據,並將數據通過空格分割 JavaRDD<List<String>> transactions = sc.textFile(data_path) .map(new Function<String, List<String>>() { public List<String> call(String s) throws Exception { String[] parts = s.split(" "); return Arrays.asList(parts); } }); //創建FPGrowth的算法實例,同時設置好訓練時的最小支持度和數據分區 FPGrowth fpGrowth = new FPGrowth().setMinSupport(minSupport).setNumPartitions(numPartition); FPGrowthModel<String> model = fpGrowth.run(transactions);//執行算法 //查看所有頻繁諅,並列出它出現的次數 for(FPGrowth.FreqItemset<String> itemset : model.freqItemsets().toJavaRDD().collect()) System.out.println("[" + itemset.javaItems() + "]," + itemset.freq()); //通過置信度篩選出強規則 //antecedent表示前項 //consequent表示后項 //confidence表示規則的置信度 for(AssociationRules.Rule<String> rule : model.generateAssociationRules(minConfidence).toJavaRDD().collect()) System.out.println(rule.javaAntecedent() + "=>" + rule.javaConsequent() + ", " + rule.confidence()); } }
直接在Maven工程中運用上面的代碼會有問題,因此這里需要添加依賴項解決項目中的問題,依賴項的添加如下:
<dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.10</artifactId> <version>2.1.0</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-mllib_2.10</artifactId> <version>2.1.0</version> </dependency> </dependencies>
本地模式運行的結果如下:
[t, s, y]=>[x], 1.0 [t, s, y]=>[z], 1.0 [y, x, z]=>[t], 1.0 [y]=>[x], 1.0 [y]=>[z], 1.0 [y]=>[t], 1.0 [p]=>[r], 1.0 [p]=>[z], 1.0 [q, t, z]=>[y], 1.0 [q, t, z]=>[x], 1.0 [q, y]=>[x], 1.0 [q, y]=>[z], 1.0 [q, y]=>[t], 1.0 [t, s, x]=>[y], 1.0 [t, s, x]=>[z], 1.0 [q, t, y, z]=>[x], 1.0 [q, t, x, z]=>[y], 1.0 [q, x]=>[y], 1.0 [q, x]=>[t], 1.0 [q, x]=>[z], 1.0 [t, x, z]=>[y], 1.0 [x, z]=>[y], 1.0 [x, z]=>[t], 1.0 [p, z]=>[r], 1.0 [t]=>[y], 1.0 [t]=>[x], 1.0 [t]=>[z], 1.0 [y, z]=>[x], 1.0 [y, z]=>[t], 1.0 [p, r]=>[z], 1.0 [t, s]=>[y], 1.0 [t, s]=>[x], 1.0 [t, s]=>[z], 1.0 [q, z]=>[y], 1.0 [q, z]=>[t], 1.0 [q, z]=>[x], 1.0 [q, y, z]=>[x], 1.0 [q, y, z]=>[t], 1.0 [y, x]=>[z], 1.0 [y, x]=>[t], 1.0 [q, x, z]=>[y], 1.0 [q, x, z]=>[t], 1.0 [t, y, z]=>[x], 1.0 [q, y, x]=>[z], 1.0 [q, y, x]=>[t], 1.0 [q, t, y, x]=>[z], 1.0 [t, s, x, z]=>[y], 1.0 [s, y, x]=>[z], 1.0 [s, y, x]=>[t], 1.0 [s, x, z]=>[y], 1.0 [s, x, z]=>[t], 1.0 [q, y, x, z]=>[t], 1.0 [s, y]=>[x], 1.0 [s, y]=>[z], 1.0 [s, y]=>[t], 1.0 [q, t, y]=>[x], 1.0 [q, t, y]=>[z], 1.0 [t, y]=>[x], 1.0 [t, y]=>[z], 1.0 [t, z]=>[y], 1.0 [t, z]=>[x], 1.0 [t, s, y, x]=>[z], 1.0 [t, y, x]=>[z], 1.0 [q, t]=>[y], 1.0 [q, t]=>[x], 1.0 [q, t]=>[z], 1.0 [q]=>[y], 1.0 [q]=>[t], 1.0 [q]=>[x], 1.0 [q]=>[z], 1.0 [t, s, z]=>[y], 1.0 [t, s, z]=>[x], 1.0 [t, x]=>[y], 1.0 [t, x]=>[z], 1.0 [s, z]=>[y], 1.0 [s, z]=>[x], 1.0 [s, z]=>[t], 1.0 [s, y, x, z]=>[t], 1.0 [s]=>[x], 1.0 [t, s, y, z]=>[x], 1.0 [s, y, z]=>[x], 1.0 [s, y, z]=>[t], 1.0 [q, t, x]=>[y], 1.0 [q, t, x]=>[z], 1.0 [r, z]=>[p], 1.0
三、Spark集群部署。代碼修改正如:
import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.mllib.fpm.AssociationRules; import org.apache.spark.mllib.fpm.FPGrowth; import org.apache.spark.mllib.fpm.FPGrowthModel; import java.util.Arrays; import java.util.List; public class FPDemo { public static void main(String[] args){ String data_path; //數據集路徑 double minSupport = 0.2;//最小支持度 int numPartition = 10; //數據分區 double minConfidence = 0.8;//最小置信度 if(args.length < 1){ System.out.println("<input data_path>"); System.exit(-1); } data_path = args[0]; if(args.length >= 2) minSupport = Double.parseDouble(args[1]); if(args.length >= 3) numPartition = Integer.parseInt(args[2]); if(args.length >= 4) minConfidence = Double.parseDouble(args[3]); SparkConf conf = new SparkConf().setAppName("FPDemo");////修改的地方 JavaSparkContext sc = new JavaSparkContext(conf); //加載數據,並將數據通過空格分割 JavaRDD<List<String>> transactions = sc.textFile(data_path) .map(new Function<String, List<String>>() { public List<String> call(String s) throws Exception { String[] parts = s.split(" "); return Arrays.asList(parts); } }); //創建FPGrowth的算法實例,同時設置好訓練時的最小支持度和數據分區 FPGrowth fpGrowth = new FPGrowth().setMinSupport(minSupport).setNumPartitions(numPartition); FPGrowthModel<String> model = fpGrowth.run(transactions);//執行算法 //查看所有頻繁諅,並列出它出現的次數 for(FPGrowth.FreqItemset<String> itemset : model.freqItemsets().toJavaRDD().collect()) System.out.println("[" + itemset.javaItems() + "]," + itemset.freq()); //通過置信度篩選出強規則 //antecedent表示前項 //consequent表示后項 //confidence表示規則的置信度 for(AssociationRules.Rule<String> rule : model.generateAssociationRules(minConfidence).toJavaRDD().collect()) System.out.println(rule.javaAntecedent() + "=>" + rule.javaConsequent() + ", " + rule.confidence()); } }
然后在IDEA中打包成JAR包
然后在工具欄
生成Jar包,然后上傳到集群中執行命令
得到結果