《算法導論》描述了一個關於區間樹的重疊搜索,這里簡單描述下原理,然后給出代碼。
區間樹是建立在紅黑樹的基礎上,額外維護了一個信息域。在《算法導論》中,已經給出了任何額外信息域的維護,是相似的證明。所以,建議不懂得,先試着實現一個基本的,帶size域的紅黑樹(書上已經給出原理),然后再擴展到區間樹。下面是代碼。
定義區間樹
class rb_tree {//區間樹 public: typedef struct _rb_interval { _rb_interval(int _low, int _high):low(_low), high(_high){} int low; int high; }rb_interval, *prb_interval; typedef struct _rb_type { _rb_type(_rb_type *_left, _rb_type *_right, _rb_type *_p, bool cl, _rb_interval _inte) : left(_left), right(_right), p(_p), color(cl), inte(_inte), max(_inte.high) {} bool color;//true for red, false for black int max;//區間上限 rb_interval inte;//區間范圍 _rb_type *left, *right, *p; }rb_type, *prb_type; rb_tree(_rb_interval *A, int n) :root(NULL) { for (int i = 0; i < n; i++) this->rb_insert(A[i]); } ~rb_tree() { rb_empty(root); } void left_rotate(prb_type x); void right_rotate(prb_type x); void rb_insert(rb_interval _inte); prb_type rb_max(prb_type x); prb_type rb_min(prb_type x); prb_type rb_search(rb_interval _inte);//《算法導論》給出的重疊查找 prb_type rb_search_exact(rb_interval _inte);//精確查找,刪除節點需要 prb_type rb_next(rb_interval _inte); prb_type rb_prev(rb_interval _inte); void rb_delete(rb_interval _inte); void rb_empty(prb_type x);//后續全部刪除 prb_type rb_root(); void rb_show(prb_type x); private: bool overlap(rb_interval _x, rb_interval _y); int max(int a, int b, int c); int max(int a, int b); void rb_insert_fixup(prb_type x); void rb_delete_fixup(prb_type x); //測試使用 int rb_max_depth(prb_type x); int rb_min_depth(prb_type x); prb_type root; };
各成員函數實現
left_rotate、right_rotate成員函數,在本身的紅黑樹基礎上,多了一個max域的維護
void rb_tree::left_rotate(typename rb_tree::prb_type x) { prb_type y = x->right;//y非空 x->right = y->left; if (y->left) y->left->p = x;//交換子節點 y->p = x->p;//更新父節點 if (x->p == NULL)//將y連接到x的父節點 root = y; else { if (x == x->p->left) x->p->left = y; else x->p->right = y; } y->left = x; x->p = y; //階段二更新max y->max = x->max; x->max = this->max(x->inte.high, x->left ? x->left->max : 0, x->right ? x->right->max : 0); } void rb_tree::right_rotate(typename rb_tree::prb_type x) { prb_type y = x->left; x->left = y->right; if (y->right) y->right->p = x; y->p = x->p; if (x->p == NULL) root = y; else { if (x == x->p->left) x->p->left = y; else x->p->right = y; } y->right = x; x->p = y; //階段二更新max y->max = x->max; x->max = this->max(x->inte.high, x->left ? x->left->max : 0, x->right ? x->right->max : 0); }
rb_min、rb_max成員函數,相比紅黑樹,沒什么變化
typename rb_tree::prb_type rb_tree::rb_max(typename rb_tree::prb_type x) { if (x == NULL) return NULL; while (x->right) x = x->right; return x; } typename rb_tree::prb_type rb_tree::rb_min(typename rb_tree::prb_type x) { if (x == NULL) return NULL; while (x->left) x = x->left; return x; }
rb_search成員函數,此函數原理,由《算法導論》給出描述。這個可以用於實際應用,但是不能用於刪除,因為這個函數只檢測重疊的區間。
typename rb_tree::prb_type rb_tree::rb_search(typename rb_tree::rb_interval _inte) { prb_type x = root; while (x && !overlap(_inte, x->inte)) { if (x->left && x->left->max >= _inte.low) x = x->left; else x = x->right; } return x; }
rb_search_exact成員函數,基於上面rb_search函數的描述,為了之后能精准刪除所有節點,再實現一個精准查找。
typename rb_tree::prb_type rb_tree::rb_search_exact(typename rb_tree::rb_interval _inte) { prb_type x = root; while (x && !(x->inte.low == _inte.low && x->inte.high == _inte.high)) { if (_inte.low < x->inte.low) x = x->left; else x = x->right; } return x; }
rb_next、rb_prev成員函數
typename rb_tree::prb_type rb_tree::rb_next(typename rb_tree::rb_interval _inte) { prb_type x = rb_search_exact(_inte), y; if (x == NULL) return NULL; if (x->right) return rb_min(x->right); y = x->p; while (y != NULL && y->right == x) {//沒有則返回NULL x = y; y = y->p; } return y; } typename rb_tree::prb_type rb_tree::rb_prev(typename rb_tree::rb_interval _inte) { prb_type x = rb_search_exact(_inte), y; if (x == NULL) return NULL; if (x->left) return rb_max(x->left); y = x->p; while (y != NULL && y->left == x) { x = y; y = y->p; } return y; }
rb_insert函數,有第一階段額外信息域的維護
void rb_tree::rb_insert(typename rb_tree::rb_interval _inte) { prb_type y = NULL, x = root, z = new rb_type(NULL, NULL, NULL, true,_inte); while (x != NULL) { y = x; x->max = this->max(x->max, z->max);//階段一更新max if (_inte.low < x->inte.low) x = x->left; else x = x->right; } z->p = y; if (y == NULL) root = z; else { if (_inte.low < y->inte.low) y->left = z; else y->right = z; } rb_insert_fixup(z); }
rb_insert_fixup成員函數,插入后修復,和紅黑樹相比,沒有變化,原因參考《算法導論》
void rb_tree::rb_insert_fixup(typename rb_tree::prb_type x) { prb_type y; while (x->p && x->p->color) {//紅色 if (x->p == x->p->p->left) {//父節點存在,一定存在祖父節點 y = x->p->p->right; //無法滿足性質4 if (!y || y->color) {//若y為NULL,默認不存在的節點是黑色 x->p->color = false; if (y) y->color = false; x->p->p->color = true; x = x->p->p;//重新設置z節點 } else if (x == x->p->right) { //無法滿足性質5 x = x->p; left_rotate(x); } if (x->p && x->p->p) {//保證存在 x->p->color = false; x->p->p->color = true; right_rotate(x->p->p); } } else {//和上面左節點相反 y = x->p->p->left; if (!y || y->color) { x->p->color = false; if (y) y->color = false; x->p->p->color = true; x = x->p->p;//重新設置z節點 } else if (x == x->p->left) { x = x->p; right_rotate(x); } if (x->p && x->p->p) { x->p->color = false; x->p->p->color = true; left_rotate(x->p->p); } } } root->color = false; }
rb_delete函數,有第一階段,額外信息域的維護
void rb_tree::rb_delete(typename rb_tree::rb_interval _inte) { prb_type z = rb_search_exact(_inte), y, x; if (z == NULL) return; if (z->left == NULL || z->right == NULL)//y是待刪除的節點 y = z;//z有一個子節點 else y = rb_next(_inte);//z有兩個子節點,后繼和前趨保證了y有一個或沒有子節點 if (y->left != NULL) x = y->left; else x = y->right; if (x != NULL) //存在一個子節點,先更正父子關系 x->p = y->p; if (y->p == NULL)//再決定是在左或者右節點 root = x; else { if (y->p->left == y) y->p->left = x; else y->p->right = x; } if (y != z)//處理兩個子節點的交換 z->inte = y->inte; //更新max z = y->p; while (z) { z->max = this->max(z->max, z->left ? z->left->max : 0, z->right ? z->right->max : 0); z = z->p; } if (!y->color)//黑色 rb_delete_fixup(x); delete y; }
rb_delete_fixup成員函數,沒有任何變化
void rb_tree::rb_delete_fixup(typename rb_tree::prb_type x) { prb_type w; while (x && x != root && !x->color) {//黑色 if (x == x->p->left) { w = x->p->right; if (w->color) {//紅色 w->color = false; x->p->color = true; left_rotate(x->p); w = x->p->right; } if ((!w->left && !w->right) || (!w->left->color && !w->right->color)) {//雙黑 w->color = true; x = x->p; } else { if (!w->right->color) {//單黑 w->left->color = false; w->color = true; right_rotate(w); w = x->p->right; } w->color = x->p->color; x->p->color = false; w->right->color = false; left_rotate(x->p); x = root; } } else {//相反的情況 w = x->p->left; if (w->color) {//紅色 w->color = false; x->p->color = true; right_rotate(x->p); w = x->p->left; } if ((!w->left && !w->right) || (!w->left->color && !w->right->color)) {//雙黑 w->color = true; x = x->p; } else { if (!w->left->color) {//單黑 w->right->color = false; w->color = true; left_rotate(w); w = x->p->left; } w->color = x->p->color; x->p->color = false; w->left->color = false; right_rotate(x->p); x = root; } } } if (x) x->color = false;//巧妙處理,默認黑 }
rb_empty成員函數,清空所有節點
void rb_tree::rb_empty(typename rb_tree::prb_type x) { if (x != NULL) { rb_empty(x->left); rb_empty(x->right); printf("\n--------------[%d,%d]---------\n",x->inte.low,x->inte.high); rb_delete(x->inte);//后續保證子葉為空 rb_show(root); } } typename rb_tree::prb_type rb_tree::rb_root() { return root; }
三個輔助函數,overlap,max(有重載)
bool rb_tree::overlap(typename rb_tree::rb_interval _x, typename rb_tree::rb_interval _y) {//閉區間 if (_x.high < _y.low || _x.low > _y.high) // _x 和 _y 沒有重疊 return false; return true; } int rb_tree::max(int a, int b, int c) { if (a>b) return a>c ? a : c; else return b>c ? b : c; } int rb_tree::max(int a, int b) { return a > b ? a : b; }
用於測試各成員函數是否正確的相關成員函數
void rb_tree::rb_show(typename rb_tree::prb_type x) { if (x != NULL) { rb_show(x->left); if (x == root) printf("root: (%s)[%d,%d], max=%d, (%d,%d)\n", root->color ? "red" : "black", x->inte.low, x->inte.high, x->max, rb_max_depth(x), rb_min_depth(x)); else printf("(%s)[%d,%d], max=%d, (%d,%d)\n", x->color ? "red" : "black", x->inte.low, x->inte.high, x->max, rb_max_depth(x), rb_min_depth(x)); rb_show(x->right); } }
int rb_tree::rb_max_depth(typename rb_tree::prb_type x) { if (x == NULL) return 0; int l = rb_max_depth(x->left); int r = rb_max_depth(x->right); return (l > r ? l : r) + 1; } int rb_tree::rb_min_depth(typename rb_tree::prb_type x) { if (x == NULL) return 0; int l = rb_min_depth(x->left); int r = rb_min_depth(x->right); return (l < r ? l : r) + 1; }
所有代碼均經過測試,結果正確!!!
