有了上一篇《.NET Core玩轉機器學習》打基礎,這一次我們以紐約出租車費的預測做為新的場景案例,來體驗一下回歸模型。
場景概述
我們的目標是預測紐約的出租車費,乍一看似乎僅僅取決於行程的距離和時長,然而紐約的出租車供應商對其他因素,如額外的乘客數、信用卡而不是現金支付等,會綜合考慮而收取不同數額的費用。紐約市官方給出了一份樣本數據。
確定策略
為了能夠預測出租車費,我們選擇通過機器學習建立一個回歸模型。使用官方提供的真實數據進行擬合,在訓練模型的過程中確定真正能影響出租車費的決定性特征。在獲得模型后,對模型進行評估驗證,如果偏差在接受的范圍內,就以這個模型來對新的數據進行預測。
解決方案
-
創建項目
看過上一篇文章的讀者,就比較輕車熟路了,推薦使用Visual Studio 2017創建一個.NET Core的控制台應用程序項目,命名為TaxiFarePrediction。使用NuGet包管理工具添加對Microsoft.ML的引用。
-
准備數據集
下載訓練數據集taxi-fare-train.csv和驗證數據集taxi-fare-test.csv,數據集的內容類似為:
vendor_id,rate_code,passenger_count,trip_time_in_secs,trip_distance,payment_type,fare_amount VTS,1,1,1140,3.75,CRD,15.5 VTS,1,1,480,2.72,CRD,10.0 VTS,1,1,1680,7.8,CSH,26.5 VTS,1,1,600,4.73,CSH,14.5 VTS,1,1,600,2.18,CRD,9.5 ...
對字段簡單說明一下:
字段名 含義 說明 vendor_id 供應商編號 特征值 rate_code 比率碼 特征值 passenger_count 乘客人數 特征值 trip_time_in_secs 行程時長 特征值 trip_distance 行程距離 特征值 payment_type 支付類型 特征值 fare_amount 費用 目標值 在項目中添加一個Data目錄,將兩份數據集復制到該目錄下,對文件屬性設置“復制到輸出目錄”。
-
定義數據類型和路徑
首先聲明相關的包引用。
using System; using Microsoft.ML.Models; using Microsoft.ML.Runtime; using Microsoft.ML.Runtime.Api; using Microsoft.ML.Trainers; using Microsoft.ML.Transforms; using System.Collections.Generic; using System.Linq; using Microsoft.ML;
在Main函數的上方定義一些使用到的常量。
const string DataPath = @".\Data\taxi-fare-train.csv"; const string TestDataPath = @".\Data\taxi-fare-test.csv"; const string ModelPath = @".\Models\Model.zip"; const string ModelDirectory = @".\Models";
接下來定義一些使用到的數據類型,以及和數據集中每一行的位置對應關系。
public class TaxiTrip { [Column(ordinal: "0")] public string vendor_id; [Column(ordinal: "1")] public string rate_code; [Column(ordinal: "2")] public float passenger_count; [Column(ordinal: "3")] public float trip_time_in_secs; [Column(ordinal: "4")] public float trip_distance; [Column(ordinal: "5")] public string payment_type; [Column(ordinal: "6")] public float fare_amount; } public class TaxiTripFarePrediction { [ColumnName("Score")] public float fare_amount; } static class TestTrips { internal static readonly TaxiTrip Trip1 = new TaxiTrip { vendor_id = "VTS", rate_code = "1", passenger_count = 1, trip_distance = 10.33f, payment_type = "CSH", fare_amount = 0 // predict it. actual = 29.5 }; }
-
創建處理過程
創建一個Train方法,定義對數據集的處理過程,隨后聲明一個模型接收訓練后的結果,在返回前把模型保存到指定的位置,以便以后直接取出來使用不需要再重新訓練。
public static async Task<PredictionModel<TaxiTrip, TaxiTripFarePrediction>> Train() { var pipeline = new LearningPipeline(); pipeline.Add(new TextLoader<TaxiTrip>(DataPath, useHeader: true, separator: ",")); pipeline.Add(new ColumnCopier(("fare_amount", "Label"))); pipeline.Add(new CategoricalOneHotVectorizer("vendor_id", "rate_code", "payment_type")); pipeline.Add(new ColumnConcatenator("Features", "vendor_id", "rate_code", "passenger_count", "trip_distance", "payment_type")); pipeline.Add(new FastTreeRegressor()); PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = pipeline.Train<TaxiTrip, TaxiTripFarePrediction>(); if (!Directory.Exists(ModelDirectory)) { Directory.CreateDirectory(ModelDirectory); } await model.WriteAsync(ModelPath); return model; }
-
評估驗證模型
創建一個Evaluate方法,對訓練后的模型進行驗證評估。
public static void Evaluate(PredictionModel<TaxiTrip, TaxiTripFarePrediction> model) { var testData = new TextLoader<TaxiTrip>(TestDataPath, useHeader: true, separator: ","); var evaluator = new RegressionEvaluator(); RegressionMetrics metrics = evaluator.Evaluate(model, testData); // Rms should be around 2.795276 Console.WriteLine("Rms=" + metrics.Rms); Console.WriteLine("RSquared = " + metrics.RSquared); }
-
預測新數據
定義一個被用於預測的新數據,對於各個特征進行恰當地賦值。
static class TestTrips { internal static readonly TaxiTrip Trip1 = new TaxiTrip { vendor_id = "VTS", rate_code = "1", passenger_count = 1, trip_distance = 10.33f, payment_type = "CSH", fare_amount = 0 // predict it. actual = 29.5 }; }
預測的方法很簡單,prediction即預測的結果,從中打印出預測的費用和真實費用。
var prediction = model.Predict(TestTrips.Trip1); Console.WriteLine("Predicted fare: {0}, actual fare: 29.5", prediction.fare_amount);
-
運行結果
到此我們完成了所有的步驟,關於這些代碼的詳細說明,可以參看《Tutorial: Use ML.NET to Predict New York Taxi Fares (Regression)》,只是要注意該文中的部分代碼有誤,由於使用到了C# 7.1的語法特性,本文的代碼是經過了修正的。完整的代碼如下:
using System; using Microsoft.ML.Models; using Microsoft.ML.Runtime; using Microsoft.ML.Runtime.Api; using Microsoft.ML.Trainers; using Microsoft.ML.Transforms; using System.Collections.Generic; using System.Linq; using Microsoft.ML; using System.Threading.Tasks; using System.IO; namespace TaxiFarePrediction { class Program { const string DataPath = @".\Data\taxi-fare-train.csv"; const string TestDataPath = @".\Data\taxi-fare-test.csv"; const string ModelPath = @".\Models\Model.zip"; const string ModelDirectory = @".\Models"; public class TaxiTrip { [Column(ordinal: "0")] public string vendor_id; [Column(ordinal: "1")] public string rate_code; [Column(ordinal: "2")] public float passenger_count; [Column(ordinal: "3")] public float trip_time_in_secs; [Column(ordinal: "4")] public float trip_distance; [Column(ordinal: "5")] public string payment_type; [Column(ordinal: "6")] public float fare_amount; } public class TaxiTripFarePrediction { [ColumnName("Score")] public float fare_amount; } static class TestTrips { internal static readonly TaxiTrip Trip1 = new TaxiTrip { vendor_id = "VTS", rate_code = "1", passenger_count = 1, trip_distance = 10.33f, payment_type = "CSH", fare_amount = 0 // predict it. actual = 29.5 }; } public static async Task<PredictionModel<TaxiTrip, TaxiTripFarePrediction>> Train() { var pipeline = new LearningPipeline(); pipeline.Add(new TextLoader<TaxiTrip>(DataPath, useHeader: true, separator: ",")); pipeline.Add(new ColumnCopier(("fare_amount", "Label"))); pipeline.Add(new CategoricalOneHotVectorizer("vendor_id", "rate_code", "payment_type")); pipeline.Add(new ColumnConcatenator("Features", "vendor_id", "rate_code", "passenger_count", "trip_distance", "payment_type")); pipeline.Add(new FastTreeRegressor()); PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = pipeline.Train<TaxiTrip, TaxiTripFarePrediction>(); if (!Directory.Exists(ModelDirectory)) { Directory.CreateDirectory(ModelDirectory); } await model.WriteAsync(ModelPath); return model; } public static void Evaluate(PredictionModel<TaxiTrip, TaxiTripFarePrediction> model) { var testData = new TextLoader<TaxiTrip>(TestDataPath, useHeader: true, separator: ","); var evaluator = new RegressionEvaluator(); RegressionMetrics metrics = evaluator.Evaluate(model, testData); // Rms should be around 2.795276 Console.WriteLine("Rms=" + metrics.Rms); Console.WriteLine("RSquared = " + metrics.RSquared); } static async Task Main(string[] args) { PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = await Train(); Evaluate(model); var prediction = model.Predict(TestTrips.Trip1); Console.WriteLine("Predicted fare: {0}, actual fare: 29.5", prediction.fare_amount); } } }
不知不覺我們的ML.NET之旅又向前進了一步,是不是對於使用.NET Core進行機器學習解決現實生活中的問題更有興趣了?請保持關注吧。