tf.nn.conv2d
在使用TF搭建CNN的過程中,卷積的操作如下
convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], padding="SAME")
這個函數中各個參數的含義是什么呢?
- X:輸入數據的mini-batch,為一個4D tensor;分別表示的含義為[n_batch,height,width,channel]
- filters:為卷積核,為一個4D tensor,分別表示的含義為 [filter_height, filter_width, in_channels, out_channels]
- stride:為步長,使用方法為[1,stride,stride,1]
該方法先將filter展開為一個2D的矩陣,形狀為[filter_heightfilter_width in_channels, out_channels],再在圖片上面選擇一塊大小進行卷積計算的到一個大小為[batch, out_height, out_width, filter_height * filter_width * in_channels]的虛擬張量。
再將上面兩部相乘(右乘filter矩陣) - padding:string類型的量,只能是"SAME","VALID"其中之一,這個值決定了不同的卷積方式。下面使用圖表示兩種的計算形式
當使用VALID
的時候,如果卷積計算過程中,剩下的不夠一步,則剩下的像素會被拋棄,SAME
則會補0.
filter_primes = np.array([2., 3., 5., 7., 11., 13.], dtype=np.float32)
x = tf.constant(np.arange(1, 13+1, dtype=np.float32).reshape([1, 1, 13, 1]))
filters = tf.constant(filter_primes.reshape(1, 6, 1, 1))
valid_conv = tf.nn.conv2d(x, filters, strides=[1, 1, 5, 1], padding='VALID')
same_conv = tf.nn.conv2d(x, filters, strides=[1, 1, 5, 1], padding='SAME')
with tf.Session() as sess:
print("VALID:\n", valid_conv.eval())
print("SAME:\n", same_conv.eval())
輸出內容為
VALID:
[[[[ 184.]
[ 389.]]]]
SAME:
[[[[ 143.]
[ 348.]
[ 204.]]]]
實際計算向量如下所示:
print("VALID:")
print(np.array([1,2,3,4,5,6]).T.dot(filter_primes))
print(np.array([6,7,8,9,10,11]).T.dot(filter_primes))
print("SAME:")
print(np.array([0,1,2,3,4,5]).T.dot(filter_primes))
print(np.array([5,6,7,8,9,10]).T.dot(filter_primes))
print(np.array([10,11,12,13,0,0]).T.dot(filter_primes))
>>
VALID:
184.0
389.0
SAME:
143.0
348.0
204.0
再來做一個小實驗,使用VALID
的時候:
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1]))
op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='VALID')
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(op)
# print(sess.run(op))
>>Tensor("Conv2D:0", shape=(1, 2, 2, 1), dtype=float32)
使用SAME
的時候
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1]))
op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(op)
# print(sess.run(op))
>>Tensor("Conv2D:0", shape=(1, 3, 3, 1), dtype=float32)
note:在做卷積的過程中filter的shape為[hight,width,channel],也就是說如果為如果輸入只有一個channel的時候,filter為一個矩陣,如果channel為3的時候,這個時候的filter就有了厚度
為3。
tf.layer.conv2d
同時TF也提供了tf.layer.conv2d的方法
def conv2d(inputs,
filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format='channels_last',
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer=None,
bias_initializer=init_ops.zeros_initializer(),
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
trainable=True,
name=None,
reuse=None):
這個方法和tf.nn.conv2d
有着相同的作用,相當於對其的更高層的api。兩個方法的調用過程如下:
tf.layers.conv2d-> tf.nn.convolution .
tf.layers.conv2d->Conv2D->Conv2D.apply()->_Conv->_Conv.apply()->_Layer.apply()->_Layer.\__call__()->_Conv.call()->nn.convolution()...
我用這兩個方法搭建了相同的神經網絡,可是得到的准確率相差很大,其他部分代碼一張樣。代碼和准確率如下。為何差別這么的大?
def conv2d(self,input,ksize,stride,name):
with tf.name_scope(name):
with tf.variable_scope(name):
w = tf.get_variable("%s-w" %name,shape= ksize,initializer=tf.truncated_normal_initializer())
b = tf.get_variable("%s-b" %name,shape = [ksize[-1]],initializer = tf.constant_initializer())
out = tf.nn.conv2d(input,w,strides=[1,stride,stride,1],padding="SAME",name="%s-conv"%name)
out = tf.nn.bias_add(out,b,name='%s-bias_add' %name)
out = tf.nn.relu(out,name="%s-relu"%name)
return out
conv1 = tf.layers.conv2d(X,filters=conv1_fmaps, \
kernel_size = conv1_ksize,strides=conv1_stride,\
padding=conv1_pad,activation=tf.nn.relu,name='conv1')
為何差異這么大呢?我現在還沒弄查出結果,如果知道答案請指出
,先謝過。
tf.layers.conv2d中默認的kernel_initializer
tf.layer.conv2d
這里面默認的kernel_initializer
為None,經查閱源碼
self.kernel = vs.get_variable('kernel',
shape=kernel_shape,
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
trainable=True,
dtype=self.dtype)
這里面有一段說明
If initializer is `None` (the default), the default initializer passed in
the constructor is used. If that one is `None` too, we use a new
`glorot_uniform_initializer`. If initializer is a Tensor, we use
it as a value and derive the shape from the initializer.
也就是說使用的是
glorot_uniform_initializer
來進行初始化的。這種方法又被稱為Xavier uniform initializer
,相關的文獻在這里 。另外TF中tf.layers.dense
也是使用的這個初始化方法。我把初始化方法都改成了使用tf.truncated_normal_initializer
,上面模型的結果沒有什么改善。看來初始化方法不是主要原因。求解。