如何理解機器學習/統計學中的各種范數norm | L1 | L2 | 使用哪種regularization方法?


參考:

L1 Norm Regularization and Sparsity Explained for Dummies 專為小白解釋的文章,文筆十分之幽默

  1. why does a small L1 norm give a sparse solution?
  2. why does a sparse solution avoid over-fitting?
  3. what does regularization do really?

減少feature的數量可以防止over fitting,尤其是在特征比樣本數多得多的情況下。

L1就二維而言是一個四邊形(L1 norm is |x| + |y|),它是只有形狀沒有大小的,所以可以不斷伸縮。我們得到的參數是一個直線(兩個參數時),也就是我們有無數種取參數的方法,但是我們想滿足L1的約束條件,所以 要選擇相交點的參數組。

Then why not letting p < 1? That’s because when p < 1, there are calculation difficulties. 所以我們通常只在L1和L2之間選,這是因為計算問題,並不是不能。

 

l0-Norm, l1-Norm, l2-Norm, … , l-infinity Norm

\left \| x \right \|_p = \sqrt[p]{\sum_{i}\left | x_i \right |^p}  where p \epsilon \mathbb{R}

就是一個簡單的公式而已,所有的范數瞬間都可以理解了。(注意范數的寫法,寫在下面,帶雙豎杠)

 

 

Before answering your question I need to edit that Manhattan norm is actually L1 norm and Euclidean norm is L2.

As for real-life meaning, Euclidean norm measures the beeline/bird-line distance, i.e. just the length of the line segment connecting two points. However, when we move around, especially in a crowded city area like Manhattan, we obviously cannot follow a straight line (unless you can fly like a bird). Instead, we need to follow a grid-like route, e.g. 3 blocks to teh west, then 4 blocks to the south. The length of this grid route is the Manhattan norm.

 

之前的印象是L1就是Lasso,是一個四邊形,相當於絕對值。

L2就是Ridge,相當於是一個圓。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM