GAN Theory
Modifyingthe Optimization of GAN
題目 |
內容 |
GAN |
|
DCGAN |
|
WGAN |
|
Least-square GAN |
|
Loss Sensitive GAN |
|
Energy-based GAN |
|
Boundary-seeking GAN |
|
Unroll GAN |
Different Structure from the Original GAN
題目 |
內容 |
Conditional GAN |
|
Semi-supervised GAN |
|
InfoGAN |
|
BiGAN |
|
Cycle GAN |
|
Disco GAN |
|
VAE-GAN |
|
LAPGAN |
用了多個GAN可生成高分辨率圖像 |
GAN Application
pix2pix |
|
題目 |
內容 |
Image-to-Image Translation with Conditional Adversarial Networks |
image2image、paired Image-to-Image Translation |
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs |
image2imageHD、paired Image-to-Image Translation |
CycleGAN |
Unpaired Image-to-Image Translation |
Disco GAN |
側重分析雙向映射,或者說 bijective mapping 的約束:避免 mode collapse 進而提升生成樣本質量的 |
DualGAN |
生成器和判別器都和pix2pix一樣。 用了wgan來訓練。 |
注:最后三篇論文的想法十分相似,幾乎可以說是孿生三兄弟 |
text2image |
|
題目 |
內容 |
人臉生成 |
|
題目 |
內容 |
Face-generator - Generate human faces with neural networks |
|
Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis |
根據單一側臉生成正面逼真人臉 |
NEURAL FACE |
use DCGAN、鏈接:https://carpedm20.github.io/faces/ |
注:DCGAN、WGAN這類都可以生成人臉 |
按生成的圖片種類分 |
|
題目 |
內容 |
生成卧室 |
DCGAN、WGAN |
生成動漫頭像 |
DCGAN |