CycleGAN的原理可以概述為:
將一類圖片轉換成另一類圖片 。也就是說,現在有兩個樣
本空間,X和Y,我們希望把X空間中的樣本轉換成Y空間中
的樣本。(獲取一個數據集的特征,並轉化成另一個數據
集的特征)
這樣來看:實際的目標就是學習從X到Y的映射。我們設這
個映射為F。它就對應着GAN中的 生成器 ,F可以將X中的
圖片x轉換為Y中的圖片F(x)。對於生成的圖片,我們還需要
GAN中的 判別器 來判別它是否為真實圖片,由此構成對抗
生成網絡
在足夠大的樣本容量下,網絡可以將相同的輸入圖像集合
映射到目標域中圖像的任何隨機排列,其中任何學習的映
射可以歸納出與目標分布匹配的輸出分布(即:映射F完全
可以將所有x都映射為Y空間中的同一張圖片,使損失無效
化)。
因此,單獨的對抗損失Loss不能保證學習函數可以
將單個輸入Xi映射到期望的輸出Yi。
對此,作者又提出了所謂的“循環一致性損失”
(cycle consistency loss)。
我們希望能夠把 domain A 的圖片(命名為 a)轉
化為 domain B 的圖片(命名為圖片 b)。
為了實現這個過程,我們需要兩個生成器 G_AB 和
G_BA,分別把 domain A 和 domain B 的圖片進行
互相轉換。
將X的圖片轉換到Y空間后,應該還可以轉換回來。
這樣就杜絕模型把所有X的圖片都轉換為Y空間中的
同一張圖片了
最后為了訓練這個單向 GAN 需要兩個 loss,分別是
生成器的重建 loss 和判別器的判別 loss。
判別 loss:判別器 D_B 是用來判斷輸入的圖片是否
是真實的 domain B 圖片
CycleGAN 其實就是一個 A→B 單向 GAN 加上一個
B→A 單向 GAN。兩個 GAN 共享兩個生成器,然
后各自帶一個判別器,所以加起來總共有兩個判別器
和兩個生成器。
一個單向 GAN 有兩個 loss,而 CycleGAN 加起來
總共有四個 loss。
對顏色、紋理等的轉換效果比較好,對多樣性高的、
多變的轉換效果不好(如幾何轉換)
代碼
import tensorflow as tf
import glob
from matplotlib import pyplot as plt
%matplotlib inline
AUTOTUNE = tf.data.experimental.AUTOTUNE
import os
os.listdir('../input/apple2orange/apple2orange')
imgs_A = glob.glob('../input/apple2orange/apple2orange/trainA/*.jpg')
imgs_B = glob.glob('../input/apple2orange/apple2orange/trainB/*.jpg')
test_A = glob.glob('../input/apple2orange/apple2orange/testA/*.jpg')
test_B = glob.glob('../input/apple2orange/apple2orange/testB/*.jpg')
def read_jpg(path):
img = tf.io.read_file(path)
img = tf.image.decode_jpeg(img, channels=3)
return img
def normalize(input_image):
input_image = tf.cast(input_image, tf.float32)/127.5 - 1
return input_image
def load_image(image_path):
image = read_jpg(image_path)
image = tf.image.resize(image, (256, 256))
image = normalize(image)
return image
train_a = tf.data.Dataset.from_tensor_slices(imgs_A)
train_b = tf.data.Dataset.from_tensor_slices(imgs_B)
test_a = tf.data.Dataset.from_tensor_slices(test_A)
test_b = tf.data.Dataset.from_tensor_slices(test_B)
BUFFER_SIZE = 200
train_a = train_a.map(load_image,
num_parallel_calls=AUTOTUNE).cache().shuffle(BUFFER_SIZE).batch(1)
train_b = train_b.map(load_image,
num_parallel_calls=AUTOTUNE).cache().shuffle(BUFFER_SIZE).batch(1)
test_a = test_a.map(load_image,
num_parallel_calls=AUTOTUNE).cache().shuffle(BUFFER_SIZE).batch(1)
test_b = test_b.map(load_image,
num_parallel_calls=AUTOTUNE).cache().shuffle(BUFFER_SIZE).batch(1)
data_train = tf.data.Dataset.zip((train_a, train_b))
data_test = tf.data.Dataset.zip((test_a, test_b))
plt.figure(figsize=(6, 3))
for img, musk in zip(train_a.take(1), train_b.take(1)):
plt.subplot(1,2,1)
plt.imshow(tf.keras.preprocessing.image.array_to_img(img[0]))
plt.subplot(1,2,2)
plt.imshow(tf.keras.preprocessing.image.array_to_img(musk[0]))
實例歸一化
!pip install tensorflow_addons
import tensorflow_addons as tfa
OUTPUT_CHANNELS = 3
def downsample(filters, size, apply_batchnorm=True):
# initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2D(filters, size, strides=2, padding='same',
use_bias=False))
if apply_batchnorm:
result.add(tfa.layers.InstanceNormalization())
result.add(tf.keras.layers.LeakyReLU())
return result
def upsample(filters, size, apply_dropout=False):
# initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2DTranspose(filters, size, strides=2,
padding='same',
use_bias=False))
result.add(tfa.layers.InstanceNormalization())
if apply_dropout:
result.add(tf.keras.layers.Dropout(0.5))
result.add(tf.keras.layers.ReLU())
return result
def Generator():
inputs = tf.keras.layers.Input(shape=[256,256,3])
down_stack = [
downsample(64, 4, apply_batchnorm=False), # (bs, 128, 128, 64)
downsample(128, 4), # (bs, 64, 64, 128)
downsample(256, 4), # (bs, 32, 32, 256)
downsample(512, 4), # (bs, 16, 16, 512)
downsample(512, 4), # (bs, 8, 8, 512)
downsample(512, 4), # (bs, 4, 4, 512)
downsample(512, 4), # (bs, 2, 2, 512)
downsample(512, 4), # (bs, 1, 1, 512)
]
up_stack = [
upsample(512, 4, apply_dropout=True), # (bs, 2, 2, 1024)
upsample(512, 4, apply_dropout=True), # (bs, 4, 4, 1024)
upsample(512, 4, apply_dropout=True), # (bs, 8, 8, 1024)
upsample(512, 4), # (bs, 16, 16, 1024)
upsample(256, 4), # (bs, 32, 32, 512)
upsample(128, 4), # (bs, 64, 64, 256)
upsample(64, 4), # (bs, 128, 128, 128)
]
# initializer = tf.random_normal_initializer(0., 0.02)
last = tf.keras.layers.Conv2DTranspose(OUTPUT_CHANNELS, 4,
strides=2,
padding='same',
activation='tanh') # (bs, 256, 256, 3)
x = inputs
# Downsampling through the model
skips = []
for down in down_stack:
x = down(x)
skips.append(x)
skips = reversed(skips[:-1])
# Upsampling and establishing the skip connections
for up, skip in zip(up_stack, skips):
x = up(x)
x = tf.keras.layers.Concatenate()([x, skip])
x = last(x)
return tf.keras.Model(inputs=inputs, outputs=x)
generator_x = Generator() # a——>o
generator_y = Generator() # o——>a
#tf.keras.utils.plot_model(generator, show_shapes=True, dpi=64)
def Discriminator():
# initializer = tf.random_normal_initializer(0., 0.02)
inp = tf.keras.layers.Input(shape=[256, 256, 3], name='input_image')
down1 = downsample(64, 4, False)(inp) # (bs, 128, 128, 64)
down2 = downsample(128, 4)(down1) # (bs, 64, 64, 128)
down3 = downsample(256, 4)(down2) # (bs, 32, 32, 256)
zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3) # (bs, 34, 34, 256)
conv = tf.keras.layers.Conv2D(
512, 4, strides=1,use_bias=False)(zero_pad1) # (bs, 31, 31, 512)
norm1 = tfa.layers.InstanceNormalization()(conv)
leaky_relu = tf.keras.layers.LeakyReLU()(norm1)
zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu) # (bs, 33, 33, 512)
last = tf.keras.layers.Conv2D(
1, 4, strides=1)(zero_pad2) # (bs, 30, 30, 1)
return tf.keras.Model(inputs=inp, outputs=last)
discriminator_x = Discriminator() # discriminator a
discriminator_y = Discriminator() # discriminator o
#tf.keras.utils.plot_model(discriminator, show_shapes=True, dpi=64)
loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(disc_real_output, disc_generated_output):
real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output)
generated_loss = loss_object(tf.zeros_like(disc_generated_output), disc_generated_output)
total_disc_loss = real_loss + generated_loss
return total_disc_loss
def generator_loss(disc_generated_output):
gan_loss = loss_object(tf.ones_like(disc_generated_output), disc_generated_output)
return gan_loss
LAMBDA = 7
def calc_cycle_loss(real_image, cycled_image):
loss1 = tf.reduce_mean(tf.abs(real_image - cycled_image))
return LAMBDA * loss1
generator_x_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
generator_y_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
discriminator_x_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
discriminator_y_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
def generate_images(model, test_input):
prediction = model(test_input, training=True)
plt.figure(figsize=(15,15))
display_list = [test_input[0], prediction[0]]
title = ['Input Image', 'Predicted Image']
for i in range(2):
plt.subplot(1, 2, i+1)
plt.title(title[i])
# getting the pixel values between [0, 1] to plot it.
plt.imshow(display_list[i] * 0.5 + 0.5)
plt.axis('off')
plt.show()
@tf.function
def train_step(image_a, image_b):
with tf.GradientTape(persistent=True) as tape:
fake_b = generator_x(image_a, training=True)
cycled_a = generator_y(fake_b, training=True)
fake_a = generator_y(image_b, training=True)
cycled_b = generator_x(fake_a, training=True)
disc_real_a = discriminator_x(image_a, training=True)
disc_real_b = discriminator_y(image_b, training=True)
disc_fake_a = discriminator_x(fake_a, training=True)
disc_fake_b = discriminator_y(fake_b, training=True)
gen_x_loss = generator_loss(disc_fake_b)
gen_y_loss = generator_loss(disc_fake_a)
total_cycle_loss = (calc_cycle_loss(image_a, cycled_a)
+ calc_cycle_loss(image_b, cycled_b))
# 總生成器損失 = 對抗性損失 + 循環損失。
total_gen_x_loss = gen_x_loss + total_cycle_loss
total_gen_y_loss = gen_y_loss + total_cycle_loss
disc_x_loss = discriminator_loss(disc_real_a, disc_fake_a)
disc_y_loss = discriminator_loss(disc_real_b, disc_fake_b)
# 計算生成器和判別器損失。
generator_x_gradients = tape.gradient(total_gen_x_loss,
generator_x.trainable_variables)
generator_y_gradients = tape.gradient(total_gen_y_loss,
generator_y.trainable_variables)
discriminator_x_gradients = tape.gradient(disc_x_loss,
discriminator_x.trainable_variables)
discriminator_y_gradients = tape.gradient(disc_y_loss,
discriminator_y.trainable_variables)
# 將梯度應用於優化器。
generator_x_optimizer.apply_gradients(zip(generator_x_gradients,
generator_x.trainable_variables))
generator_y_optimizer.apply_gradients(zip(generator_y_gradients,
generator_y.trainable_variables))
discriminator_x_optimizer.apply_gradients(zip(discriminator_x_gradients,
discriminator_x.trainable_variables))
discriminator_y_optimizer.apply_gradients(zip(discriminator_y_gradients,
discriminator_y.trainable_variables))
def fit(train_ds, test_ds, epochs):
for epoch in range(epochs+1):
for img_a, img_b in train_ds:
train_step(img_a, img_b)
print ('.', end='')
if epoch % 5 == 0:
print()
for test_a, test_b in test_ds.take(1):
print("Epoch: ", epoch)
generate_images(generator_x, test_a)
generate_images(generator_x, test_a)
EPOCHS = 100
fit(data_train, data_test, EPOCHS)