好久沒有更新博客了,一直沒時間。現在在加拿大Montreal,時間又充裕起來,玩玩,學學,Happy Life~~~~~
// 速度反射
比如做飛鏢打耙的效果,有的飛鏢直接中靶插在上面,但也有可能有部分因為角度的原因被靶子反射的回來
1 @v = @vprevious; 2 @hitangle = dot(normalize(@v),normalize(@hitnml)); 3 if (@hitangle < ch("angle_threshold")) { 4 i@dobounce = 1; 5 @v = reflect(@v, @hitnml) * ch("scale_bounce_velocity");
@hitnml 是碰撞點的法線
// 模型 Smooth
模型Smooth其實用vex實現不難,這段代碼實現的是比較簡單的Smooth效果,在一個案例中看到,覺得代碼很簡潔,可移植性很強,就貼這里,以備后用~
1 int npts[] = neighbours(0, @ptnum); 2 vector avg = @P; 3 foreach (int npt; npts) 4 { 5 vector npos = point(0, 'P', npt); 6 avg += npos; 7 } 8 avg /= len(npts)+1; 9 @P = avg;
// Quaternion 的旋轉
很少在vex中利用Quaternion 來旋轉物體,感覺quaternion畢竟沒有3x3矩陣來的直觀,今天看到了一個范例,還蠻有意思
1 //Rotate vector 2 vector4 rot = quaternion(angle,v@spin); // create quaternion 3 pos = qrotate(rot,pos); //rotate
angle是float型弧度,spin是旋轉軸(繞那個軸旋轉)
// Bend Curve
法線和點的序號如下左圖,
旋轉后的曲線右圖 ( 旋轉曲線的主要目的是利用wiredeform旋轉模型)

//array to hold positions because //wrangle does not update attributes //well in recursive loops vector positions[]; //Fill pos array for (int i = 0; i < @numpt; i++){ vector pos = point(0,"P",i); append(positions,pos); } //Do recursive rotate for each point for (int i = 1; i < @numpt; i++){ float angle = point(0,"angle",i); angle *= ch("multiplier"); //Rotate root position vector root = positions[i-1]; vector N = point(0,"N",i-1); //Rotate every point above the root for (int k = i; k < @numpt; k++){ //Next position vector pos = positions[k]; //Move to origin pos -= root; //Rotate vector vector4 rot = quaternion(-angle,N); pos = qrotate(rot,pos); //Return Position pos += root; //Update Position positions[k] = pos; } } //Set positions from array for (int i = 0; i < @numpt; i++){ vector pos = positions[i]; setpointattrib(0,"P",i,pos); }
angle角度是一個漸變 ,根據@ptnum 逐漸增大 ,還可以加個Ramp 方便控制
