一、* , dot() multiply()
1, 對於array來說,(* 和 dot()運算不同, * 和 multiply()運算相同)
*和multiply() 是每個元素對應相乘
dot() 是矩陣乘法
2, 對於matrix來說,(* 和 multiply()運算不同,* 和 dot()運算相同)
* 和dot() 是矩陣乘法
multiply() 是每個元素對應相乘
3, 混合的時候(與矩陣同)
multiply 為對應乘
dot為矩陣乘法(矩陣在前數組在后時,均為一維時數組可適應,即能做矩陣乘法)
*為 矩陣乘法(但無上述適應性)
總結:dot為矩陣乘法;multiply是對應乘;* 看元素,元素為矩陣(包括含矩陣)時為矩陣乘法,元素為數組時為對應乘法
Python 3.6.4 (default, Jan 7 2018, 03:52:16)
[GCC 4.2.1 Compatible Android Clang 5.0.300080 ] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np
>>> a1=np.array([1,2,3])
>>> a1*a1
array([1, 4, 9])
>>> np.dot(a1,a1)
14
>>> np.multiply(a1,a1)
array([1, 4, 9])
>>> m1 = np.mat(a1)
>>> m1
matrix([[1, 2, 3]])
>>> m1*m1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/data/data/com.termux/files/usr/lib/python3.6/site-packages/numpy-1.13.3-py3.6-linux-aarch64.egg/numpy/matrixlib/defmatrix.py", line 309, in __mul__
return N.dot(self, asmatrix(other))
ValueError: shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
>>> np.dot(m1,m1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
>>> np.multiply(m1,m1)
matrix([[1, 4, 9]])
>>> np.multiply(a1,m1)
matrix([[1, 4, 9]])
>>> np.multiply(m1,a1)
matrix([[1, 4, 9]])
>>> np.dot(a1,m1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: shapes (3,) and (1,3) not aligned: 3 (dim 0) != 1 (dim 0)
>>> np.dot(m1,a1)
matrix([[14]])
>>> a1*m1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/data/data/com.termux/files/usr/lib/python3.6/site-packages/numpy-1.13.3-py3.6-linux-aarch64.egg/numpy/matrixlib/defmatrix.py", line 315, in __rmul__
return N.dot(other, self)
ValueError: shapes (3,) and (1,3) not aligned: 3 (dim 0) != 1 (dim 0)
>>> m1*a1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/data/data/com.termux/files/usr/lib/python3.6/site-packages/numpy-1.13.3-py3.6-linux-aarch64.egg/numpy/matrixlib/defmatrix.py", line 309, in __mul__
return N.dot(self, asmatrix(other))
ValueError: shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
>>> a1,m1
(array([1, 2, 3]), matrix([[1, 2, 3]]))
>>>
-------------------------------------------------------------------
當array是二維時,我們可以把它看做是矩陣(但是乘法的法則還是按照array來算)
In [45]: a_x
Out[45]:
array([[1, 2, 3],
[2, 4, 0],
[1, 2, 1]])
In [46]: a_y
Out[46]: array([[-1, 1, -1]])
先看dot
# 這時用dot做矩陣乘法要注意:滿足左邊的列數等於右邊的行數
In [47]: np.dot(a_x,a_y)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-47-3b884e90b0ef> in <module>()
----> 1 np.dot(a_x,a_y)
ValueError: shapes (3,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
In [48]: np.dot(a_y,a_x)
Out[48]: array([[ 0, 0, -4]])
# 當左邊的變為一維的數組時,結果還是一個二維的數組(矩陣形式)
In [49]: a_y_ = a_y.flatten()
In [50]: a_y_
Out[50]: array([-1, 1, -1])
然后還有一點很重要 np.dot(a_y_,a_y_) 可以將兩個一維的數組(這時沒有行列向量之說,從轉置后還為本身也可以看出)直接做內積
In [109]: np.dot(a_y_,a_y_)
Out[109]: 3
In [51]: np.dot(a_y,a_x)
Out[51]: array([[ 0, 0, -4]])
再看multiply(與*的效果一致):
In [52]: a_y
Out[52]: array([[-1, 1, -1]])
In [53]: a_y_
Out[53]: array([-1, 1, -1])
In [54]: np.multiply(a_y,a_y_)
Out[54]: array([[1, 1, 1]])
In [55]: np.multiply(a_y_,a_y)
Out[55]: array([[1, 1, 1]])
得到結論:都是以高維的那個元素決定結果的維度。(重要)
In [56]: np.multiply(a_y_,a_y_.T) # 在a_y_是一維的行向量,a_y_ = a_y_.T,所以結果一樣
Out[56]: array([1, 1, 1])
In [57]: np.multiply(a_y_,a_y.T) # a_y 是二維的行向量,轉置一下就變成二維的列向量
Out[57]:
array([[ 1, -1, 1],
[-1, 1, -1],
[ 1, -1, 1]])
In [58]: np.multiply(a_y,a_y.T) # 與上述效果相同
Out[58]:
array([[ 1, -1, 1],
[-1, 1, -1],
[ 1, -1, 1]])
上面兩個就是下面這倆對應元素相乘!
In [59]: a_y
Out[59]: array([[-1, 1, -1]])
In [60]: a_y.T
Out[60]:
array([[-1],
[ 1],
[-1]])
與下面這種張量積效果相同
In [61]: np.outer(a_y,a_y)
Out[61]:
array([[ 1, -1, 1],
[-1, 1, -1],
[ 1, -1, 1]])
In [62]: np.outer(a_y,a_y.T) # 這時用不用轉置的效果都一樣
Out[62]:
array([[ 1, -1, 1],
[-1, 1, -1],
[ 1, -1, 1]])
In [63]: np.outer(a_y_,a_y_) # 兩個一維的行向量外積的效果也一樣
Out[63]:
array([[ 1, -1, 1],
[-1, 1, -1],
[ 1, -1, 1]])
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
下面看一下 .T 和 .transpose()
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
在小於等於二維的情況下,兩者效果是相同的!
In [64]: x
Out[64]:
matrix([[1, 2, 3],
[2, 4, 0],
[1, 2, 1]])
In [65]: a_x
Out[65]:
array([[1, 2, 3],
[2, 4, 0],
[1, 2, 1]])
In [68]: (x.T == x.transpose()).all() # 為矩陣時相同
Out[68]: True
In [70]: (a_x.T == a_x.transpose()).all() # 為數組時相同
Out[70]: True
In [71]: (a_y.T == a_y.transpose()).all() # a_y為一維數組(行向量)相同
Out[71]: True
In [72]: (a_y_.T == a_y_.transpose()).all() # a_y_為二維數組(行向量)也相同
Out[72]: True
下面才是兩種區別的重點:
當維數大於等於三時(此時只有數組了),
T 其實就是把順序全部顛倒過來,
而transpose(), 里面可以指定順序,輸入為一個元組(x0,x1,x2...x(n-1) )為(0,1,2,...,n-1)的一個排列,其中n為數組維數,
效果與np.transpose(arr, axes=(x0,x1,x2...x(n-1)) ) 相同,
def transpose(self, *axes): # real signature unknown; restored from __doc__ """ a.transpose(*axes) Returns a view of the array with axes transposed. For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided and ``a.shape = (i[0], i[1], ... i[n-2], i[n-1])``, then ``a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0])``. Parameters ---------- axes : None, tuple of ints, or `n` ints * None or no argument: reverses the order of the axes. * tuple of ints: `i` in the `j`-th place in the tuple means `a`'s `i`-th axis becomes `a.transpose()`'s `j`-th axis. * `n` ints: same as an n-tuple of the same ints (this form is intended simply as a "convenience" alternative to the tuple form) Returns ------- out : ndarray View of `a`, with axes suitably permuted. See Also -------- ndarray.T : Array property returning the array transposed. Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> a array([[1, 2], [3, 4]]) >>> a.transpose() array([[1, 3], [2, 4]]) >>> a.transpose((1, 0)) array([[1, 3], [2, 4]]) >>> a.transpose(1, 0) array([[1, 3], [2, 4]]) """ pass
這兩者的源代碼還是又挺大區別的,雖然意思差不多
def transpose(a, axes=None): """ Permute the dimensions of an array. Parameters ---------- a : array_like Input array. axes : list of ints, optional By default, reverse the dimensions, otherwise permute the axes according to the values given. Returns ------- p : ndarray `a` with its axes permuted. A view is returned whenever possible. See Also -------- moveaxis argsort Notes ----- Use `transpose(a, argsort(axes))` to invert the transposition of tensors when using the `axes` keyword argument. Transposing a 1-D array returns an unchanged view of the original array. Examples -------- >>> x = np.arange(4).reshape((2,2)) >>> x array([[0, 1], [2, 3]]) >>> np.transpose(x) array([[0, 2], [1, 3]]) >>> x = np.ones((1, 2, 3)) >>> np.transpose(x, (1, 0, 2)).shape (2, 1, 3) """ return _wrapfunc(a, 'transpose', axes)
還是看實驗吧:
In [73]: arr=np.arange(16).reshape(2,2,4)
In [74]: arr
Out[74]:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
In [75]: arr.transpose((1,0,2)) # 注意這個參數不帶key,不能寫axes=(1,0,2),若寫成這個,則報錯
Out[75]:
array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],
[[ 4, 5, 6, 7],
[12, 13, 14, 15]]])
In [78]: np.transpose(arr, (1, 0, 2)) #這個參數可帶key,刻寫成axes=(1,0,2),若寫成這個,則通過
Out[78]:
array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],
[[ 4, 5, 6, 7],
[12, 13, 14, 15]]])
三個維度的編號對應為(0,1,2),比如這樣,我們需要拿到7這個數字,怎么辦,肯定需要些三個維度的值,7的第一個維度為0,第二個維度為1,第三個3,
即坐標軸(0,1,2)的對應的坐標為(0,1,3)所以arr[0,1,3]則拿到了7
所以相當於把原來坐標軸[0,1,2]的轉置到[1,0,2],即把之前第三個維度轉為第一個維度,之前的第二個維度不變,之前的第一個維度變為第三個維度
理解了上面,再來理解swapaxes()就很簡單了,swapaxes接受一對軸編號,其實這里我們叫一對維度編號更好吧
arr.swapaxes(2,1) 就是將第三個維度和第二個維度交換
注意這個函數必須接受兩個參數,(兩個軸),不能寫成元組(2,1)的形式再傳入。
In [81]: arr.swapaxes(2,1)
Out[81]:
array([[[ 0, 4],
[ 1, 5],
[ 2, 6],
[ 3, 7]],
[[ 8, 12],
[ 9, 13],
[10, 14],
[11, 15]]])
In [82]: arr.swapaxes((2,1))
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-82-24459d1e2980> in <module>()
----> 1 arr.swapaxes((2,1))
TypeError: swapaxes() takes exactly 2 arguments (1 given)
還是那我們的數字7來說,之前的索引是(0,1,3),那么交換之后,就應該是(0,3,1)
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------