詞移距離(Word Mover's Distance)是在詞向量的基礎上發展而來的用來衡量文檔相似性的度量。
詞移距離的具體介紹參考
http://blog.csdn.net/qrlhl/article/details/78512598
或網上的其他資料
詞移距離的gensim官方例子在https://github.com/RaRe-Technologies/gensim/blob/c971411c09773488dbdd899754537c0d1a9fce50/docs/notebooks/WMD_tutorial.ipynb
此處,用詞移距離來衡量唐詩詩句的相關性。為什么用唐詩?因為全唐詩的txt很容易獲取,隨便一搜就可以下載了。全唐詩txt鏈接:https://files.cnblogs.com/files/combfish/%E5%85%A8%E5%94%90%E8%AF%97.zip。
步驟:
1. 預處理語料集: 唐詩的斷句分詞,斷句基於標點符號,分詞依靠結巴分詞
2. gensim訓練詞向量模型與wmd相似性模型
3. 查詢
代碼:
import jieba from nltk import word_tokenize from nltk.corpus import stopwords from time import time start_nb = time() import logging print(20*'*','loading data',40*'*') f=open('全唐詩.txt',encoding='utf-8') lines=f.readlines() corpus=[] documents=[] useless=[',','.','(',')','!','?','\'','\"',':','<','>', ',', '。', '(', ')', '!', '?', '’', '“',':','《','》','[',']','【','】'] for each in lines: each=each.replace('\n','') each.replace('-','') each=each.strip() each=each.replace(' ','') if(len(each)>3): if(each[0]!='卷'): documents.append(each) each=list(jieba.cut(each)) text=[w for w in each if not w in useless] corpus.append(text) print(len(corpus)) print(20*'*','trainning models',40*'*') from gensim.models import Word2Vec model = Word2Vec(corpus, workers=3, size=100) # Initialize WmdSimilarity. from gensim.similarities import WmdSimilarity num_best = 10 instance = WmdSimilarity(corpus, model, num_best=10) print(20*'*','testing',40*'*') while True: sent = input('輸入查詢語句: ') sent_w = list(jieba.cut(sent)) query = [w for w in sent_w if not w in useless] sims = instance[query] # A query is simply a "look-up" in the similarity class. # Print the query and the retrieved documents, together with their similarities. print('Query:') print(sent) for i in range(num_best): print print('sim = %.4f' % sims[i][1]) print(documents[sims[i][0]])
結果:從結果kan







<wiz_tmp_tag id="wiz-table-range-border" contenteditable="false" style="display: none;">