唐詩掠影:基於詞移距離(Word Mover's Distance)的唐詩詩句匹配實踐


詞移距離(Word Mover's Distance)是在詞向量的基礎上發展而來的用來衡量文檔相似性的度量。
 
詞移距離的具體介紹參考 http://blog.csdn.net/qrlhl/article/details/78512598   或網上的其他資料
 
此處,用詞移距離來衡量唐詩詩句的相關性。為什么用唐詩?因為全唐詩的txt很容易獲取,隨便一搜就可以下載了。全唐詩txt鏈接:https://files.cnblogs.com/files/combfish/%E5%85%A8%E5%94%90%E8%AF%97.zip。
 
步驟:
1. 預處理語料集: 唐詩的斷句分詞,斷句基於標點符號,分詞依靠結巴分詞
2. gensim訓練詞向量模型與wmd相似性模型
3. 查詢
 
代碼:
import jieba
from nltk import word_tokenize
from nltk.corpus import stopwords
from time import time
start_nb = time()
import logging

print(20*'*','loading data',40*'*')
f=open('全唐詩.txt',encoding='utf-8')
lines=f.readlines()
corpus=[]
documents=[]
useless=[',','.','(',')','!','?','\'','\"',':','<','>',
         ',', '。', '(', ')', '!', '?', '’', '“',':','《','》','[',']','【','】']
for each in lines:
    each=each.replace('\n','')
    each.replace('-','')
    each=each.strip()
    each=each.replace(' ','')
    if(len(each)>3):
        if(each[0]!='卷'):
            documents.append(each)
            each=list(jieba.cut(each))
            text=[w for w in each if not w in useless]
            corpus.append(text)

print(len(corpus))

print(20*'*','trainning models',40*'*')
from gensim.models import Word2Vec
model = Word2Vec(corpus, workers=3, size=100)

# Initialize WmdSimilarity.
from gensim.similarities import WmdSimilarity
num_best = 10
instance = WmdSimilarity(corpus, model, num_best=10)

print(20*'*','testing',40*'*')
while True:
    sent = input('輸入查詢語句: ')
    sent_w = list(jieba.cut(sent))
    query = [w for w in sent_w if not w in useless]

    sims = instance[query]  # A query is simply a "look-up" in the similarity class.

    # Print the query and the retrieved documents, together with their similarities.
    print('Query:')
    print(sent)
    for i in range(num_best):
        print
        print('sim = %.4f' % sims[i][1])
        print(documents[sims[i][0]])

  

結果:從結果kan
 
 
 
 
 
 
 
 
 

<wiz_tmp_tag id="wiz-table-range-border" contenteditable="false" style="display: none;">






免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM