词移距离(Word Mover's Distance)是在词向量的基础上发展而来的用来衡量文档相似性的度量。
词移距离的具体介绍参考
http://blog.csdn.net/qrlhl/article/details/78512598
或网上的其他资料
词移距离的gensim官方例子在https://github.com/RaRe-Technologies/gensim/blob/c971411c09773488dbdd899754537c0d1a9fce50/docs/notebooks/WMD_tutorial.ipynb
此处,用词移距离来衡量唐诗诗句的相关性。为什么用唐诗?因为全唐诗的txt很容易获取,随便一搜就可以下载了。全唐诗txt链接:https://files.cnblogs.com/files/combfish/%E5%85%A8%E5%94%90%E8%AF%97.zip。
步骤:
1. 预处理语料集: 唐诗的断句分词,断句基于标点符号,分词依靠结巴分词
2. gensim训练词向量模型与wmd相似性模型
3. 查询
代码:
import jieba from nltk import word_tokenize from nltk.corpus import stopwords from time import time start_nb = time() import logging print(20*'*','loading data',40*'*') f=open('全唐诗.txt',encoding='utf-8') lines=f.readlines() corpus=[] documents=[] useless=[',','.','(',')','!','?','\'','\"',':','<','>', ',', '。', '(', ')', '!', '?', '’', '“',':','《','》','[',']','【','】'] for each in lines: each=each.replace('\n','') each.replace('-','') each=each.strip() each=each.replace(' ','') if(len(each)>3): if(each[0]!='卷'): documents.append(each) each=list(jieba.cut(each)) text=[w for w in each if not w in useless] corpus.append(text) print(len(corpus)) print(20*'*','trainning models',40*'*') from gensim.models import Word2Vec model = Word2Vec(corpus, workers=3, size=100) # Initialize WmdSimilarity. from gensim.similarities import WmdSimilarity num_best = 10 instance = WmdSimilarity(corpus, model, num_best=10) print(20*'*','testing',40*'*') while True: sent = input('输入查询语句: ') sent_w = list(jieba.cut(sent)) query = [w for w in sent_w if not w in useless] sims = instance[query] # A query is simply a "look-up" in the similarity class. # Print the query and the retrieved documents, together with their similarities. print('Query:') print(sent) for i in range(num_best): print print('sim = %.4f' % sims[i][1]) print(documents[sims[i][0]])
结果:从结果kan







<wiz_tmp_tag id="wiz-table-range-border" contenteditable="false" style="display: none;">