TensorFlow - 深度學習破解驗證碼
簡介:驗證碼主要用於防刷,傳統的驗證碼識別算法一般需要把驗證碼分割為單個字符,然后逐個識別,如果字符之間相互重疊,傳統的算法就然並卵了,本文采用cnn對驗證碼進行整體識別。
主要涉及:
- 1.captcha庫生成驗證碼
- 2.如何將驗證碼識別問題轉化為分類問題
- 3.可以訓練自己的驗證碼識別模型
一.安裝 captcha 庫
sudo pip install captcha
生成驗證碼訓練數據
所有的模型訓練,數據是王道,本文采用 captcha 庫生成驗證碼,captcha 可以生成語音和圖片驗證碼,我們采用生成圖片驗證碼功能,驗證碼是由數字、大寫字母、小寫字母組成(當然你也可以根據自己的需求調整,比如添加一些特殊字符),長度為 4,所以總共有 62^4 種組合驗證碼。
驗證碼生成器
采用 python 中生成器方式來生成我們的訓練數據,這樣的好處是,不需要提前生成大量的數據,訓練過程中生成數據,並且可以無限生成數據。
示例代碼:
在 /home/ubuntu 目錄下創建源文件 generate_captcha.py,內容可參考:
示例代碼:
/home/ubuntu/generate_captcha.py
#!/usr/bin/python
# -*- coding: utf-8 -*
from captcha.image import ImageCaptcha
from PIL import Image
import numpy as np
import random
import string
class generateCaptcha():
def __init__(self,
width = 160,#驗證碼圖片的寬
height = 60,#驗證碼圖片的高
char_num = 4,#驗證碼字符個數
characters = string.digits + string.ascii_uppercase + string.ascii_lowercase):#驗證碼組成,數字+大寫字母+小寫字母
self.width = width
self.height = height
self.char_num = char_num
self.characters = characters
self.classes = len(characters)
def gen_captcha(self,batch_size = 50):
X = np.zeros([batch_size,self.height,self.width,1])
img = np.zeros((self.height,self.width),dtype=np.uint8)
Y = np.zeros([batch_size,self.char_num,self.classes])
image = ImageCaptcha(width = self.width,height = self.height)
while True:
for i in range(batch_size):
captcha_str = ''.join(random.sample(self.characters,self.char_num))
img = image.generate_image(captcha_str).convert('L')
img = np.array(img.getdata())
X[i] = np.reshape(img,[self.height,self.width,1])/255.0
for j,ch in enumerate(captcha_str):
Y[i,j,self.characters.find(ch)] = 1
Y = np.reshape(Y,(batch_size,self.char_num*self.classes))
yield X,Y
def decode_captcha(self,y):
y = np.reshape(y,(len(y),self.char_num,self.classes))
return ''.join(self.characters[x] for x in np.argmax(y,axis = 2)[0,:])
def get_parameter(self):
return self.width,self.height,self.char_num,self.characters,self.classes
def gen_test_captcha(self):
image = ImageCaptcha(width = self.width,height = self.height)
captcha_str = ''.join(random.sample(self.characters,self.char_num))
img = image.generate_image(captcha_str)
img.save(captcha_str + '.jpg')
然后執行:
cd /home/ubuntu;
python
import generate_captcha
g = generate_captcha.generateCaptcha()
g.gen_test_captcha()
執行結果:
在 /home/ubuntu 目錄下查看生成的驗證碼,jpg 格式的圖片可以點擊查看。
二.驗證碼識別模型
將驗證碼識別問題轉化為分類問題,總共 62^4 種類型,采用 4 個 one-hot 編碼分別表示 4 個字符取值。
cnn 驗證碼識別模型
3 層隱藏層、2 層全連接層,對每層都進行 dropout。input——>conv——>pool——>dropout——>conv——>pool——>dropout——>conv——>pool——>dropout——>fully connected layer——>dropout——>fully connected layer——>output
示例代碼:
現在您可以在 /home/ubuntu 目錄下創建源文件 captcha_model.py,內容可參考:
示例代碼:
/home/ubuntu/captcha_model.py
#!/usr/bin/python
# -*- coding: utf-8 -*
import tensorflow as tf
import math
class captchaModel():
def __init__(self,
width = 160,
height = 60,
char_num = 4,
classes = 62):
self.width = width
self.height = height
self.char_num = char_num
self.classes = classes
def conv2d(self,x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(self,x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(self,shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(self,shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def create_model(self,x_images,keep_prob):
#first layer
w_conv1 = self.weight_variable([5, 5, 1, 32])
b_conv1 = self.bias_variable([32])
h_conv1 = tf.nn.relu(tf.nn.bias_add(self.conv2d(x_images, w_conv1), b_conv1))
h_pool1 = self.max_pool_2x2(h_conv1)
h_dropout1 = tf.nn.dropout(h_pool1,keep_prob)
conv_width = math.ceil(self.width/2)
conv_height = math.ceil(self.height/2)
#second layer
w_conv2 = self.weight_variable([5, 5, 32, 64])
b_conv2 = self.bias_variable([64])
h_conv2 = tf.nn.relu(tf.nn.bias_add(self.conv2d(h_dropout1, w_conv2), b_conv2))
h_pool2 = self.max_pool_2x2(h_conv2)
h_dropout2 = tf.nn.dropout(h_pool2,keep_prob)
conv_width = math.ceil(conv_width/2)
conv_height = math.ceil(conv_height/2)
#third layer
w_conv3 = self.weight_variable([5, 5, 64, 64])
b_conv3 = self.bias_variable([64])
h_conv3 = tf.nn.relu(tf.nn.bias_add(self.conv2d(h_dropout2, w_conv3), b_conv3))
h_pool3 = self.max_pool_2x2(h_conv3)
h_dropout3 = tf.nn.dropout(h_pool3,keep_prob)
conv_width = math.ceil(conv_width/2)
conv_height = math.ceil(conv_height/2)
#first fully layer
conv_width = int(conv_width)
conv_height = int(conv_height)
w_fc1 = self.weight_variable([64*conv_width*conv_height,1024])
b_fc1 = self.bias_variable([1024])
h_dropout3_flat = tf.reshape(h_dropout3,[-1,64*conv_width*conv_height])
h_fc1 = tf.nn.relu(tf.nn.bias_add(tf.matmul(h_dropout3_flat, w_fc1), b_fc1))
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#second fully layer
w_fc2 = self.weight_variable([1024,self.char_num*self.classes])
b_fc2 = self.bias_variable([self.char_num*self.classes])
y_conv = tf.add(tf.matmul(h_fc1_drop, w_fc2), b_fc2)
return y_conv
訓練 cnn 驗證碼識別模型
每批次采用 64 個訓練樣本,每 100 次循環采用 100 個測試樣本檢查識別准確度,當准確度大於 99% 時,訓練結束,采用 GPU 需要 5-6 個小時左右,CPU 大概需要 20 個小時左右。
注:作為實驗,你可以通過調整 train_captcha.py 文件中 if acc > 0.99: 代碼行的准確度節省訓練時間(比如將 0.99 為 0.01);同時,我們已經通過長時間的訓練得到了一個訓練集,可以通過如下命令將訓練集下載到本地。
wget http://tensorflow-1253902462.cosgz.myqcloud.com/captcha/capcha_model.zip
unzip capcha_model.zip
現在可以在 /home/ubuntu 目錄下創建源文件 train_captcha.py,內容可參考:
示例代碼:/home/ubuntu/train_captcha.py
#!/usr/bin/python
import tensorflow as tf
import numpy as np
import string
import generate_captcha
import captcha_model
if __name__ == '__main__':
captcha = generate_captcha.generateCaptcha()
width,height,char_num,characters,classes = captcha.get_parameter()
x = tf.placeholder(tf.float32, [None, height,width,1])
y_ = tf.placeholder(tf.float32, [None, char_num*classes])
keep_prob = tf.placeholder(tf.float32)
model = captcha_model.captchaModel(width,height,char_num,classes)
y_conv = model.create_model(x,keep_prob)
cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y_,logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
predict = tf.reshape(y_conv, [-1,char_num, classes])
real = tf.reshape(y_,[-1,char_num, classes])
correct_prediction = tf.equal(tf.argmax(predict,2), tf.argmax(real,2))
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction)
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 0
while True:
batch_x,batch_y = next(captcha.gen_captcha(64))
_,loss = sess.run([train_step,cross_entropy],feed_dict={x: batch_x, y_: batch_y, keep_prob: 0.75})
print ('step:%d,loss:%f' % (step,loss))
if step % 100 == 0:
batch_x_test,batch_y_test = next(captcha.gen_captcha(100))
acc = sess.run(accuracy, feed_dict={x: batch_x_test, y_: batch_y_test, keep_prob: 1.})
print ('###############################################step:%d,accuracy:%f' % (step,acc))
if acc > 0.99:
saver.save(sess,"capcha_model.ckpt")
break
step += 1
然后執行:
cd /home/ubuntu;
python train_captcha.py
執行結果:
step:75173,loss:0.010555
step:75174,loss:0.009410
step:75175,loss:0.009978
step:75176,loss:0.008089
step:75177,loss:0.009949
step:75178,loss:0.010126
step:75179,loss:0.009584
step:75180,loss:0.012272
step:75181,loss:0.010157
step:75182,loss:0.009529
step:75183,loss:0.007636
step:75184,loss:0.009058
step:75185,loss:0.010061
step:75186,loss:0.009941
step:75187,loss:0.009339
step:75188,loss:0.009685
step:75189,loss:0.009879
step:75190,loss:0.007799
step:75191,loss:0.010866
step:75192,loss:0.009838
step:75193,loss:0.010931
step:75194,loss:0.012859
step:75195,loss:0.008747
step:75196,loss:0.009147
step:75197,loss:0.009351
step:75198,loss:0.009746
step:75199,loss:0.010014
step:75200,loss:0.009024
###############################################step:75200,accuracy:0.992500
三.測試 cnn 驗證碼識別模型
示例代碼:
現在您可以在 /home/ubuntu 目錄下創建源文件 predict_captcha.py,內容可參考:
示例代碼:/home/ubuntu/predict_captcha.py
#!/usr/bin/python
from PIL import Image, ImageFilter
import tensorflow as tf
import numpy as np
import string
import sys
import generate_captcha
import captcha_model
if __name__ == '__main__':
captcha = generate_captcha.generateCaptcha()
width,height,char_num,characters,classes = captcha.get_parameter()
gray_image = Image.open(sys.argv[1]).convert('L')
img = np.array(gray_image.getdata())
test_x = np.reshape(img,[height,width,1])/255.0
x = tf.placeholder(tf.float32, [None, height,width,1])
keep_prob = tf.placeholder(tf.float32)
model = captcha_model.captchaModel(width,height,char_num,classes)
y_conv = model.create_model(x,keep_prob)
predict = tf.argmax(tf.reshape(y_conv, [-1,char_num, classes]),2)
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
with tf.Session(config=tf.ConfigProto(log_device_placement=False,gpu_options=gpu_options)) as sess:
sess.run(init_op)
saver.restore(sess, "capcha_model.ckpt")
pre_list = sess.run(predict,feed_dict={x: [test_x], keep_prob: 1})
for i in pre_list:
s = ''
for j in i:
s += characters[j]
print s
然后執行:
cd /home/ubuntu;
python predict_captcha.py Kz2J.jpg
執行結果:
Kz2J
注:因為實驗時間的限制,你可能調整了准確度導致執行結果不符合預期,屬於正常情況。
在訓練時間足夠長的情況下,你可以采用驗證碼生成器生成測試數據,cnn 訓練出來的驗證碼識別模型還是很強大的,大小寫的 z 都可以區分,甚至有時候人都無法區分,該模型也可以正確的識別。