近些年,SLAM技術已經獲得了突飛猛進的發展,SLAM技術在工業機器人,AR,VR技術,以及智能車等方面都有着廣大的應用前途。SLAM技術完成了智能體(對SLAM主體的統稱)對環境的幾何信息的理解,但是忽略了對環境語義信息的理解。單純的SLAM技術是缺乏場景理解能力的,智能體實時的對3D環境感知理解能力是智能體的技術的關鍵部分。
ORB-SLAM,LSD-SLAM,DSO等方法已經能夠幫助智能體對大場景環境獲得實時的幾何信息,視覺SLAM可以實時的構建世界3D地圖,並且實時估計智能體的位置以及朝向。SLAM算法與Deeping learning,cnn是互補的,SLAM關注於世界的幾何信息,后者關注智能體對於世界的認知。如果你想讓機器人去桌子附近,不要碰撞,可以使用SLAM,但是如果你想讓機器人去桌子上拿蘋果,就離不開CNN。
並且SLAM與語義也是互補的關系,語義幫助SLAM減緩對特征的依賴,對地圖進行更高層次的理解,語義信息一定可以提高SLAM的魯班程度。而SLAM也可以幫助語義,SLAM獲取的幾何信息也是方便機器人進行語義理解的重要內容。隨着時間的發展,兩者必然會擦出火花。
While self-driving cars are one of the most important applications of SLAM, according to Andrew Davison, one of the workshop organizers, SLAM for Autonomous Vehicles deserves its own research track. (And as we'll see, none of the workshop presenters talked about self-driving cars). For many years to come it will make sense to continue studying SLAM from a research perspective, independent of any single Holy-Grail application. While there are just too many system-level details and tricks involved with autonomous vehicles, research-grade SLAM systems require very little more than a webcam, knowledge of algorithms, and elbow grease. As a research topic, Visual SLAM is much friendlier to thousands of early-stage PhD students who’ll first need years of in-lab experience with SLAM before even starting to think about expensive robotic platforms such as self-driving cars.
對於智能車而言,我也相信DL必將在每一個智能車里面幫助智能車對環境進行理解,哪里是可行駛區域,前方的“障礙物”是車還是人,交通標志的含義是什么,這些都需要DL來解決,