我在前面的博客中解說了鏈表、棧和隊列。這些數據結構事實上都是線性表,而且給出了具體的實現。
從今天開始。我們將要來學習樹,樹作為一種數據結構我們常常會用到,作為起步和基礎。我們先來實現二叉樹。也就是每一個節點有不超過2個子節點的樹。對於樹的操作,最主要的創建、遍歷、求樹高、節點數等。代碼上傳至 https://github.com/chenyufeng1991/BinaryTree 。
(1)節點的定義
typedef struct BTNode{ int data; struct BTNode *lChild; struct BTNode *rChild; }BiTNode;
(2)二叉樹的創建
//先序創建二叉樹 int CreateBiTree(BiTNode **T) { int ch; scanf("%d",&ch); if (ch == -1) { *T = NULL; return 0; } else { *T = (BiTNode *)malloc(sizeof(BiTNode)); if (T == NULL) { printf("failed\n"); return 0; } else { (*T)->data = ch; printf("輸入%d的左子節點:",ch); CreateBiTree(&((*T)->lChild)); printf("輸入%d的右子節點:",ch); CreateBiTree((&(*T)->rChild)); } } return 1; }
(3)先序遍歷二叉樹
//先序遍歷二叉樹 void PreOrderBiTree(BiTNode *T) { if (T == NULL) { return; } else { printf("%d ",T->data); PreOrderBiTree(T->lChild); PreOrderBiTree(T->rChild); } }
(4)中序遍歷二叉樹
//中序遍歷二叉樹 void MiddleOrderBiTree(BiTNode *T) { if (T == NULL) { return; } else { MiddleOrderBiTree(T->lChild); printf("%d ",T->data); MiddleOrderBiTree(T->rChild); } }
(5)興許遍歷二叉樹
//興許遍歷二叉樹 void PostOrderBiTree(BiTNode *T) { if (T == NULL) { return; } else { PostOrderBiTree(T->lChild); PostOrderBiTree(T->rChild); printf("%d ",T->data); } }
(6)二叉樹的深度
//二叉樹的深度 int TreeDeep(BiTNode *T) { int deep = 0; if (T != NULL) { int leftdeep = TreeDeep(T->lChild); int rightdeep = TreeDeep(T->rChild); deep = leftdeep >= rightdeep?leftdeep+1:rightdeep+1; } return deep; }
(7)葉子節點個數
//葉子節點個數 int LeafCount(BiTNode *T) { static int count; if (T != NULL) { if (T->lChild == NULL && T->rChild == NULL) { count++; } LeafCount(T->lChild); LeafCount(T->rChild); } return count; }
//主函數 int main(int argc,const char *argv[]) { BiTNode *T; int depth,leafCount = 0; printf("請輸入第一個節點的值,-1表示沒有葉節點:\n"); CreateBiTree(&T); printf("先序遍歷二叉樹:"); PreOrderBiTree(T); printf("\n"); printf("中序遍歷二叉樹:"); MiddleOrderBiTree(T); printf("\n"); printf("興許遍歷二叉樹:"); PostOrderBiTree(T); printf("\n"); depth = TreeDeep(T); printf("樹的深度為:%d\n",depth); leafCount = LeafCount(T); printf("葉子節點個數:%d\n",leafCount); return 0; }