一、BoW算法
用OpenCV實現了最簡單的BoW算法進行了一次小規模的圖像檢索任務,使用UKbench數據庫,算法原理和網上的描述差不多,使用K-means算法進行聚類,這里使用KDTree算法進行特征量化,按照自己的理解計算了TF-IDF權重,使用余弦距離計算圖像之間的相似性。下面給出關鍵函數依賴於OpenCV的實現:
如TF-IDF權重的計算,這里只是按照自己的理解實現了算法,有的地方傳參不是很合適,不過不影響效果:
std::vector<double> compute_TF(cv::Mat& descriptors, cv::Mat& labels) { std::vector<double> tf(Num_clu, 0.0); for (int i = 0; i < descriptors.rows; i++) { tf[labels.at<int>(i)] ++; } for (unsigned int i = 0; i < tf.size(); i++) { tf[i] /= (float)descriptors.rows; } return tf; } std::vector<double> comput_IDF(std::vector<cv::Mat>& descriptors, std::vector<cv::Mat> &labels) { std::vector<double> idf(Num_clu, 1.0); for (unsigned int i = 0; i < descriptors.size(); i++) { std::vector<int> idf_tmp(Num_clu, 0); for (int j = 0; j < descriptors[i].rows; j++) { idf_tmp[labels[i].at<int>(j)] ++; } for (unsigned int j = 0; j < idf_tmp.size(); j++) { if (idf_tmp[j] != 0) idf[j] ++; } } for (unsigned int i = 0; i < idf.size(); i++) { idf[i] = log(Num_img / idf[i]); } return idf; }
有一點需要注意,這里的IDF應該是只計算一次,而TF則是對每一幅圖像計算一次。
有了TF-IDF函數的實現就可以計算BoW向量了,首先是計算訓練圖像的BoW向量:
cv::Mat TrainingBowVector(cv::Mat & centers, std::vector<double>& IDF) { cv::SurfFeatureDetector detector; cv::SurfDescriptorExtractor extractor; char image_name[50]; std::vector<cv::Mat> descriptor_all; descriptor_all.reserve(Num_img); //Find the keypoints and compute the descriptors; for (int i = 1; i <= Num_img; i++) { std::cout << "I:" << i << std::endl; sprintf_s(image_name, "D:\\DataBase\\UKbench\\TestImage\\%d.jpg", i); cv::Mat image = cv::imread(image_name, 0); std::vector<cv::KeyPoint> keypoints; cv::Mat descriptors; detector.detect(image, keypoints); std::cout << "Keypoints:" << keypoints.size() << std::endl; extractor.compute(image, keypoints, descriptors); descriptor_all.push_back(descriptors); } //Get the training descriptors; std::cout << "Get the training descriptors." << std::endl; cv::Mat descriptor_train; for (int j = 0; j < Num_tra; j++) descriptor_train.push_back(descriptor_all[j]); cv::Mat labels_k; cv::kmeans(descriptor_train, Num_clu, labels_k, cv::TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 100, 0.01) , 3, cv::KMEANS_PP_CENTERS, centers); const int tk = 1, Emax = INT_MAX; cv::KDTree T(centers, false); std::vector<cv::Mat> labels(Num_img); for (int i = 0; i < Num_img; i++) { cv::Mat descriptor_img = descriptor_all[i]; for (int j = 0; j < descriptor_img.rows; j++) { std::vector<float> desc_vec(descriptor_img.row(j)); std::vector<int> idx_tmp(tk); T.findNearest(desc_vec, tk, Emax, idx_tmp, cv::noArray(), cv::noArray()); labels[i].push_back(idx_tmp[0]); } } std::cout << "Compute the TF-IDF." << std::endl; cv::Mat BowVec; //Compute the TF-IDF for each image; IDF = comput_IDF(descriptor_all, labels); for (int i = 0; i < Num_img; i++) { std::vector<double> TF = compute_TF(descriptor_all[i], labels[i]); cv::Mat BowVec_tmp; for (unsigned int j = 0; j < IDF.size(); j++) { BowVec_tmp.push_back(TF[j] * IDF[j]); //BowVec_tmp.push_back(TF[j]); } BowVec_tmp = BowVec_tmp.t(); cv::normalize(BowVec_tmp, BowVec_tmp); BowVec.push_back(BowVec_tmp); } return BowVec; }
計算測試圖片的BoW向量和上面類似。有了訓練圖像和測試圖像的BoW向量就可以根據余弦距離計算相似度了,最后使用堆排序獲得最相似的圖像ID。
而Vocabuliary Tree算法的代碼實現和上面的不同點在於碼書的訓練方式。
二、DBoW2庫的使用
使用DBoW2庫訓練碼書,並根據bow打分完成圖像檢索,根據正向索引完成特征匹配,在ORB里面沒注意到倒排索引加速圖像檢索的部分。
首先是碼書的訓練(“盜用”代碼:http://www.cnblogs.com/jian-li/p/5666556.html):
#include <iostream>
#include <vector>
#include "Thirdparty/DBoW2/DBoW2/FORB.h"
#include "Thirdparty/DBoW2/DBoW2/TemplatedVocabulary.h"
// OpenCV
#include <opencv2/opencv.hpp>
#include "opencv2/core/core.hpp"
#include <opencv/cv.h>
#include <opencv/highgui.h>
#include <opencv2/nonfree/features2d.hpp>
// ROS
#include <rosbag/bag.h>
#include <rosbag/view.h>
#include <ros/ros.h>
#include <sensor_msgs/Image.h>
#include <boost/foreach.hpp>
#include <cv_bridge/cv_bridge.h>
#include "ORBextractor.h"
#include <dirent.h>
#include <string.h>
using namespace DBoW2;
using namespace DUtils;
using namespace std;
using namespace ORB_SLAM;
// - - - - - --- - - - -- - - - - -
/// ORB Vocabulary
typedef DBoW2::TemplatedVocabulary<DBoW2::FORB::TDescriptor, DBoW2::FORB>
ORBVocabulary;
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void extractORBFeatures(cv::Mat &image, vector<vector<cv::Mat> > &features, ORBextractor* extractor);
void changeStructureORB( const cv::Mat &descriptor,vector<bool> &mask, vector<cv::Mat> &out);
void isInImage(vector<cv::KeyPoint> &keys, float &cx, float &cy, float &rMin, float &rMax, vector<bool> &mask);
void createVocabularyFile(ORBVocabulary &voc, std::string &fileName, const vector<vector<cv::Mat> > &features);
// ----------------------------------------------------------------------------
int main()
{
//Extracting ORB features from image folder
vector<std::string> filenames;
std::string folder = "/home/saodiseng/FRONTAL/";
cv::glob(folder, filenames);
// initialze ORBextractor
int nLevels = 5;//6;
ORBextractor* extractor = new ORBextractor(1000,1.2,nLevels,1,20);
int nImages = filenames.size();
vector<vector<cv::Mat > > features;
features.clear();
features.reserve(nImages);
cv::Mat image;
cout << "> Extracting Features from " << nImages << " images..." << endl;
for(int i = 0; i < nImages; ++i)
{
std::cout << "Processing the " << i <<" image " << std::endl;
cv::Mat src = cv::imread(filenames[i]);
imshow("View", src);
cv::waitKey(1);
if (!src.empty())
{
cv::cvtColor(src, image, CV_RGB2GRAY);
extractORBFeatures(image, features, extractor);
}
}
cout << "... Extraction done!" << endl;
// Creating the Vocabulary
// define vocabulary
const int k = 10; // branching factor
const WeightingType weight = TF_IDF;
const ScoringType score = L1_NORM;
ORBVocabulary voc(k, nLevels, weight, score);
std::string vociName = "vociOmni.txt";
createVocabularyFile(voc, vociName, features);
cout << "--- THE END ---" << endl;
return 0;
}
// ----------------------------------------------------------------------------
void extractORBFeatures(cv::Mat &image, vector<vector<cv::Mat> > &features, ORBextractor* extractor) {
vector<cv::KeyPoint> keypoints;
cv::Mat descriptorORB;
(*extractor)(image, cv::Mat(), keypoints, descriptorORB);
// reject features outside region of interest
vector<bool> mask;
float cx = 0; float cy = 0;
float rMin = 0; float rMax = 0;
isInImage(keypoints, cx, cy, rMin, rMax, mask);
// create descriptor vector for the vocabulary
features.push_back(vector<cv::Mat>());
changeStructureORB(descriptorORB, mask, features.back());
imshow("ORBFeature", features.back().back());
}
// ----------------------------------------------------------------------------
void changeStructureORB( const cv::Mat &descriptor,vector<bool> &mask, vector<cv::Mat> &out) {
for (int i = 0; i < descriptor.rows; i++) {
if(mask[i]) {
out.push_back(descriptor.row(i));
}
}
}
// ----------------------------------------------------------------------------
void isInImage(vector<cv::KeyPoint> &keys, float &cx, float &cy, float &rMin, float &rMax, vector<bool> &mask) {
int N = keys.size();
mask = vector<bool>(N, false);
int num = 0;
for(int i=0; i<N; i++) {
cv::KeyPoint kp = keys[i];
float u = kp.pt.x;
float v = kp.pt.y;
if(u>20 && u<320-20 && v>20 && v<240-20)
{
mask[i] = true;
num ++;
}
}
std::cout << "In image number " << num << std::endl;
}
// ----------------------------------------------------------------------------
void createVocabularyFile(ORBVocabulary &voc, std::string &fileName, const vector<vector<cv::Mat> > &features)
{
cout << "> Creating vocabulary. May take some time ..." << endl;
voc.create(features);
cout << "... done!" << endl;
cout << "> Vocabulary information: " << endl
<< voc << endl << endl;
// save the vocabulary to disk
cout << endl << "> Saving vocabulary..." << endl;
voc.saveToTextFile(fileName);
cout << "... saved to file: " << fileName << endl;
}
也可以直接使用ORB給定的碼書。
再下面就是訓練BoW向量並計算打分:
void FrameRecog::ComputeBoW() { //數據類型轉換; vector<cv::Mat>vFrDesc = Converter::toDescriptorVector(Descriptors); //BowVec為BoW特征向量,FeatVec為正向索引; pORBVocabulary->transform(vFrDesc, BowVec, FeatVec, 4); } float score = pORBVocabulary->score(BowVec, vBowVec[i]);
ComputeBoW()函數計算了當前幀的BowVec向量,以及它的第4層正向索引值FeatVec。下面一句即計算了兩個BoW向量的相似性打分。當打分滿足某個閾值之后,還需要通過正向索引值進行特征匹配:
int FrameRecog::FeatMatchByBoW( const int idx ) { int nmatches = 0; const int TH_LOW = 50; const int HISTO_LENGTH = 30; const int factor = 1.0f/HISTO_LENGTH; const DBoW2::FeatureVector &vFeatVecTD = vFeatVec[idx]; const DBoW2::FeatureVector &vFeatVecCD = FeatVec; DBoW2::FeatureVector::const_iterator TDit = vFeatVecTD.begin(); DBoW2::FeatureVector::const_iterator CDit = vFeatVecCD.begin(); DBoW2::FeatureVector::const_iterator TDend= vFeatVecTD.end(); DBoW2::FeatureVector::const_iterator CDend= vFeatVecCD.end(); while( TDit != TDend && CDit != CDend ) { //first為單詞的索引,second則對應為該單詞索引下的ORB特征集合; if( TDit->first == CDit->first) { //second是要循環的對象 const vector<unsigned int> vIndicesTD = TDit->second; const vector<unsigned int> vIndicesCD = CDit->second; //循環關鍵幀和當前幀對應單詞下的特征集合,計算相似性; for ( size_t iTD = 0; iTD < vIndicesTD.size(); iTD ++ ) { const unsigned int realIdxTD = vIndicesTD[iTD]; const cv::Mat &dTD = vDescriptors[idx].row(realIdxTD); int bestDist1 = 256; int bestIdxF = -1; int bestDist2 = 256; for ( size_t iCD = 0; iCD < vIndicesCD.size(); iCD ++ ) { const unsigned int realIdxCD = vIndicesCD[iCD]; const cv::Mat &dCD = Descriptors.row(realIdxCD); const int dist = DescriptorDistance(dTD, dCD); //這里注意是雙閾值; if( dist < bestDist1 ) { bestDist2 = bestDist1; bestDist1 = dist; bestIdxF = realIdxCD; } else if( dist < bestDist2 ) { bestDist2 = dist; } } //這里有兩個輸入參數,一個是TH_LOW,是指兩個特征的最小距離閾值; //第二個是0.95,它是指相似特征的最小距離小於第二小距離的百分之九十五; //第二個參數的含義是,當該參數越接近於1時,該式越接近於成立,而越小時說明要求越高, //即最小距離遠大於第二小距離,所以兩特征是相似特征的概率非常大 if(bestDist1 <= TH_LOW) { if( static_cast<float>(bestDist1)<0.95 * static_cast<float>(bestDist2)) nmatches ++; } } TDit ++; CDit ++; } else if( TDit->first < CDit->first ) { TDit = vFeatVecTD.lower_bound(CDit->first); } else { CDit = vFeatVecCD.lower_bound(TDit->first); } } //原函數中還有特征對應的3D地圖點的輸出,以及根據ORB特征的主方向進一步判斷特征是否相似的代碼,這里略去; return nmatches; }
int FrameRecog::DescriptorDistance(const cv::Mat &a, const cv::Mat &b) { const int *pa = a.ptr<int32_t>(); const int *pb = b.ptr<int32_t>(); int dist = 0; for ( int i = 0; i < 8; i ++, pa ++, pb ++ ) { unsigned int v = *pa ^ *pb; v = v - ((v>>1) & 0x55555555); v = (v & 0x33333333) + ((v >> 2) & 0x33333333); dist += (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24; } return dist; }
上面的源文件在ORBmatches.cc中的
int ORBmatcher::SearchByBoW(KeyFrame* pKF,Frame &F, vector<MapPoint*> &vpMapPointMatches) 函數中。即通過正向索引給出特征匹配數或匹配的特征以及對應的3D點。
