[LeetCode] Lonely Pixel II 孤獨的像素之二


 

Given a picture consisting of black and white pixels, and a positive integer N, find the number of black pixels located at some specific row R and column C that align with all the following rules:

  1. Row R and column C both contain exactly N black pixels.
  2. For all rows that have a black pixel at column C, they should be exactly the same as row R

The picture is represented by a 2D char array consisting of 'B' and 'W', which means black and white pixels respectively.

Example:

Input:                                            
[['W', 'B', 'W', 'B', 'B', 'W'],    
 ['W', 'B', 'W', 'B', 'B', 'W'],    
 ['W', 'B', 'W', 'B', 'B', 'W'],    
 ['W', 'W', 'B', 'W', 'B', 'W']] 

N = 3
Output: 6
Explanation: All the bold 'B' are the black pixels we need (all 'B's at column 1 and 3).
        0    1    2    3    4    5         column index                                            
0    [['W', 'B', 'W', 'B', 'B', 'W'],    
1     ['W', 'B', 'W', 'B', 'B', 'W'],    
2     ['W', 'B', 'W', 'B', 'B', 'W'],    
3     ['W', 'W', 'B', 'W', 'B', 'W']]    
row index

Take 'B' at row R = 0 and column C = 1 as an example:
Rule 1, row R = 0 and column C = 1 both have exactly N = 3 black pixels. 
Rule 2, the rows have black pixel at column C = 1 are row 0, row 1 and row 2. They are exactly the same as row R = 0.

Note:

    1. The range of width and height of the input 2D array is [1,200].

 

這道題是之前那道Lonely Pixel I的拓展,我開始以為這次要考慮到對角線的情況,可是這次題目卻完全換了一種玩法。給了一個整數N,說對於均含有N個個黑像素的某行某列,如果該列中所有的黑像素所在的行都相同的話,該列的所有黑像素均為孤獨的像素,讓我們統計所有的這樣的孤獨的像素的個數。那么跟之前那題類似,我們還是要統計每一行每一列的黑像素的個數,而且由於條件二中要比較各行之間是否相等,如果一個字符一個字符的比較寫起來比較麻煩,我們可以用個trick,把每行的字符連起來,形成一個字符串,然后直接比較兩個字符串是否相等會簡單很多。然后我們遍歷每一行和每一列,如果某行和某列的黑像素剛好均為N,我們遍歷該列的所有黑像素,如果其所在行均相等,則說明該列的所有黑像素均為孤獨的像素,將個數加入結果res中,然后將該行的黑像素統計個數清零,以免重復運算,這樣我們就可以求出所有的孤獨的像素了,參見代碼如下:

 

解法一:

class Solution {
public:
    int findBlackPixel(vector<vector<char>>& picture, int N) {
        if (picture.empty() || picture[0].empty()) return 0;
        int m = picture.size(), n = picture[0].size(), res = 0, k = 0;
        vector<int> rowCnt(m, 0), colCnt(n, 0);
        vector<string> rows(m, "");
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                rows[i].push_back(picture[i][j]);
                if (picture[i][j] == 'B') {
                    ++rowCnt[i];
                    ++colCnt[j];
                }
            }
        }
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (rowCnt[i] == N && colCnt[j] == N) {
                    for (k = 0; k < m; ++k) {
                        if (picture[k][j] == 'B') {
                            if (rows[i] != rows[k]) break;
                        }
                    }
                    if (k == m) {
                        res += colCnt[j];
                        colCnt[j] = 0;
                    }
                }
            }
        }
        return res;
    }
};

 

看到論壇中的比較流行的解法是用哈希表來做的,建立黑像素出現個數為N的行和其出現次數之間的映射,然后我們就只需要統計每列的黑像素的個數,然后我們遍歷哈希表,找到出現次數剛好為N的行,說明矩陣中有N個相同的該行,而且該行中的黑像素的個數也剛好為N個,那么第二個條件就已經滿足了,我們只要再滿足第一個條件就行了,我們在找黑像素為N個的列就行了,有幾列就加幾個N即可,參見代碼如下:

 

解法二:

class Solution {
public:
    int findBlackPixel(vector<vector<char>>& picture, int N) {
        if (picture.empty() || picture[0].empty()) return 0;
        int m = picture.size(), n = picture[0].size(), res = 0;
        vector<int> colCnt(n, 0);
        unordered_map<string, int> u;
        for (int i = 0; i < m; ++i) {
            int cnt = 0;
            for (int j = 0; j < n; ++j) {
                if (picture[i][j] == 'B') {
                    ++colCnt[j];
                    ++cnt;
                }
            }
            if (cnt == N) ++u[string(picture[i].begin(), picture[i].end())];
        }
        for (auto a : u) {
            if (a.second != N) continue;
            for (int i = 0; i < n; ++i) {
                res += (a.first[i] == 'B' && colCnt[i] == N) ? N : 0;
            }
        }
        return res;
    }
};

 

類似題目:

Lonely Pixel I

 

參考資料:

https://discuss.leetcode.com/topic/81686/verbose-java-o-m-n-solution-hashmap/2

https://discuss.leetcode.com/topic/87164/a-c-solution-based-on-the-top-rated-issue

 

LeetCode All in One 題目講解匯總(持續更新中...)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM