轉載請注明出處:http://www.cnblogs.com/willnote/p/6746499.html
Anaconda安裝
在清華大學 TUNA 鏡像源選擇對應的操作系統與所需的Python版本下載Anaconda安裝包。Windows環境下的安裝包直接執行.exe文件進行安裝即可,Ubuntu環境下在終端執行
$ bash Anaconda2-4.3.1-Linux-x86_64.sh #Python 2.7版本
或者
$ bash Anaconda3-4.3.1-Linux-x86_64.sh #Python 3.5 版本
在安裝的過程中,會詢問安裝路徑,按回車即可。之后會詢問是否將Anaconda安裝路徑加入到環境變量(.bashrc)中,輸入yes,這樣以后在終端中輸入python即可直接進入Anaconda的Python版本(如果你的系統中之前安裝過Python,自行選擇yes or no)。安裝成功后,會有當前用戶根目錄下生成一個anaconda2的文件夾,里面就是安裝好的內容
查詢安裝信息
$ conda info
查詢當前已經安裝的庫
$ conda list
安裝庫(***代表庫名稱)
$ conda install ***
更新庫
$ conda update ***
Anaconda倉庫鏡像
官方下載更新工具包的速度很慢,所以繼續添加清華大學 TUNA提供的Anaconda倉庫鏡像,在終端或cmd中輸入如下命令進行添加
$ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
$ conda config --set show_channel_urls yes
$ conda install numpy #測試是否添加成功
之后會自動在用戶根目錄生成“.condarc”文件,Ubuntu環境下路徑為~/.condarc,Windows環境下路徑為C:\用戶\your_user_name\.condarc
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- defaults
show_channel_urls: yes
如果要刪除鏡像,直接刪除“.condarc”文件即可
Tensorflow安裝
在終端或cmd中輸入以下命令搜索當前可用的tensorflow版本
$ anaconda search -t conda tensorflow
Using Anaconda API: https://api.anaconda.org
Run 'anaconda show <USER/PACKAGE>' to get more details:
Packages:
Name | Version | Package Types | Platforms
------------------------- | ------ | --------------- | ---------------
HCC/tensorflow | 1.0.0 | conda | linux-64
HCC/tensorflow-cpucompat | 1.0.0 | conda | linux-64
HCC/tensorflow-fma | 1.0.0 | conda | linux-64
SentientPrime/tensorflow | 0.6.0 | conda | osx-64
: TensorFlow helps the tensors flow
acellera/tensorflow-cuda | 0.12.1 | conda | linux-64
anaconda/tensorflow | 1.0.1 | conda | linux-64
anaconda/tensorflow-gpu | 1.0.1 | conda | linux-64
conda-forge/tensorflow | 1.0.0 | conda | linux-64, win-64, osx-64
: TensorFlow helps the tensors flow
creditx/tensorflow | 0.9.0 | conda | linux-64
: TensorFlow helps the tensors flow
derickl/tensorflow | 0.12.1 | conda | osx-64
dhirschfeld/tensorflow | 0.12.0rc0 | conda | win-64
dseuss/tensorflow | | conda | osx-64
guyanhua/tensorflow | 1.0.0 | conda | linux-64
ijstokes/tensorflow | 2017.03.03.1349 | conda, ipynb | linux-64
jjh_cio_testing/tensorflow | 1.0.1 | conda | linux-64
jjh_cio_testing/tensorflow-gpu | 1.0.1 | conda | linux-64
jjh_ppc64le/tensorflow | 1.0.1 | conda | linux-ppc64le
jjh_ppc64le/tensorflow-gpu | 1.0.1 | conda | linux-ppc64le
jjhelmus/tensorflow | 0.12.0rc0 | conda, pypi | linux-64, osx-64
: TensorFlow helps the tensors flow
jjhelmus/tensorflow-gpu | 1.0.1 | conda | linux-64
kevin-keraudren/tensorflow | 0.9.0 | conda | linux-64
lcls-rhel7/tensorflow | 0.12.1 | conda | linux-64
marta-sd/tensorflow | 1.0.1 | conda | linux-64
: TensorFlow helps the tensors flow
memex/tensorflow | 0.5.0 | conda | linux-64, osx-64
: TensorFlow helps the tensors flow
mhworth/tensorflow | 0.7.1 | conda | osx-64
: TensorFlow helps the tensors flow
miovision/tensorflow | 0.10.0.gpu | conda | linux-64, osx-64
msarahan/tensorflow | 1.0.0rc2 | conda | linux-64
mutirri/tensorflow | 0.10.0rc0 | conda | linux-64
mwojcikowski/tensorflow | 1.0.1 | conda | linux-64
rdonnelly/tensorflow | 0.9.0 | conda | linux-64
rdonnellyr/r-tensorflow | 0.4.0 | conda | osx-64
test_org_002/tensorflow | 0.10.0rc0 | conda |
Found 32 packages
選擇一個較新的CPU或GPU版本,如jjh_cio_testing/tensorflow-gpu的1.0.1版本,輸入如下命令查詢安裝命令
$ anaconda show jjh_cio_testing/tensorflow-gpu
Using Anaconda API: https://api.anaconda.org
Name: tensorflow-gpu
Summary:
Access: public
Package Types: conda
Versions:
+ 1.0.1
To install this package with conda run:
conda install --channel https://conda.anaconda.org/jjh_cio_testing tensorflow-gpu
使用最后一行的提示命令進行安裝
$ conda install --channel https://conda.anaconda.org/jjh_cio_testing tensorflow-gpu
Fetching package metadata .............
Solving package specifications: .
Package plan for installation in environment /home/will/anaconda2:
The following packages will be SUPERSEDED by a higher-priority channel:
tensorflow-gpu: 1.0.1-py27_4 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free --> 1.0.1-py27_4 jjh_cio_testing
Proceed ([y]/n)?
conda會自動檢測安裝此版本的Tensorflow所依賴的庫,如果你的Anaconda缺少這些依賴庫,會提示你安裝。因為我之前已經安裝過了,所以這里只提示我安裝Tensorflow。輸入y並回車之后等待安裝結束即可
- 可以選擇次高版本的Tensorflow安裝,因為最新版本可能清華 TUNA的倉庫鏡像庫沒有及時更新,而官方更新連接總是失敗,我最開始選擇了jjhelmus/tensorflow-gpu的1.0.1版本,其他依賴庫清華 TUNA的倉庫鏡像有資源,而到最后jjhelmus/tensorflow-gpu版本的Tensorflow安裝包總是下載不下來,嘗試20多次之后換了一個1.0.0的版本,終於順利安裝成功
進入python,輸入
import tensorflow as tf
如果沒有報錯說明安裝成功。