目錄
1 問題描述
現需找零金額為n,則最少需要用多少面值為d1 < d2 < d3 < ... < dm的硬幣?(PS:假設這m種面值d1 < d2 < d3 < ... < dm的硬幣,其中d1 = 1,且每種硬幣數量無限可得)
2 解決方案
2.1 動態規划法
本文編碼思想參考自《算法設計與分析基礎》第三版,具體講解如下:
具體代碼如下:
package com.liuzhen.chapter8; public class ChangeMaking { public void getChangeMakingN(int[] coinType,int n){ int[] minNumber = new int[n+1]; //初始化后,所有元素均為0,其中minNumber[0] = 0,表示無須找零 int[] tempMinJ = new int[n+1]; //tempMinJ[0]在此處無含義 for(int i = 1;i <= n;i++){ int j = 0; int tempJ = -1; //用於h獲取minNumber[i]最小值中當前新使用的硬幣面值數組下標 int temp = Integer.MAX_VALUE; //計算當前minNumber[i]最小值,初始化int類型最大值 while(j < coinType.length && i >= coinType[j]){ if(minNumber[i-coinType[j]] + 1 < temp){ temp = minNumber[i-coinType[j]] + 1; tempJ = j; } j++; } minNumber[i] = temp; tempMinJ[i] = tempJ; } System.out.println("給定硬幣面值種類依次為:"); for(int i = 0;i < coinType.length;i++) System.out.print(coinType[i]+" "); System.out.println("\n找零大小從1到"+n+"的最少硬幣組合數目為:"); for(int i = 1;i < minNumber.length;i++) System.out.print(minNumber[i]+" "); System.out.println("\n對應找零大小從1到"+n+"新增的硬幣數組下標為:"); for(int i = 1;i < tempMinJ.length;i++) System.out.print(tempMinJ[i]+" "); System.out.println("\n對應找零大小從1到"+n+"新增的硬幣數組下標對應的硬幣面值為:"); for(int i = 1;i < tempMinJ.length;i++) System.out.print(coinType[tempMinJ[i]]+" "); System.out.println("\n\n找零大小為"+n+"的硬幣組合最少數目為:"+minNumber[minNumber.length-1]); System.out.print("找零大小為"+n+"的硬幣組合最少數目對應的硬幣面值依次為:"); int needN = n; int minJ = tempMinJ.length-1; while(needN > 0){ System.out.print(coinType[tempMinJ[minJ]]+" "); needN = needN - coinType[tempMinJ[minJ]]; minJ = needN; } } public static void main(String[] args){ ChangeMaking test = new ChangeMaking(); int[] coinType = {1,3,4}; test.getChangeMakingN(coinType, 6); } }
運行結果:
給定硬幣面值種類依次為: 1 3 4 找零大小從1到6的最少硬幣組合數目為: 1 2 1 1 2 2 對應找零大小從1到6新增的硬幣數組下標為: 0 0 1 2 0 1 對應找零大小從1到6新增的硬幣數組下標對應的硬幣面值為: 1 1 3 4 1 3 找零大小為6的硬幣組合最少數目為:2 找零大小為6的硬幣組合最少數目對應的硬幣面值依次為:3 3
參考資料:
1.算法設計與分析基礎(第3版) Anany Levitin 著 潘彥 譯