Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note: The solution set must not contain duplicate triplets.
For example, given array S = [-1, 0, 1, 2, -1, -4], A solution set is: [ [-1, 0, 1], [-1, -1, 2] ]
解法:
首先對原數組進行排序,然后開始遍歷排序后的數組,這里注意不是遍歷到最后一個停止,而是到倒數第三個就可以了,中間如果遇到跟前一個數相同的數字就直接跳過。對於遍歷到的數,如果大於0則跳到下一個數,因為三個大於0的數相加不可能等於0;否則用0減去這個數得到一個sum,我們只需要再之后找到兩個數之和等於sum即可,這樣一來問題又轉化為了求two sum,這時候我們一次掃描,找到了等於sum的兩數后,加上當前遍歷到的數字,按順序存入結果中即可,然后還要注意跳過重復數字。時間復雜度為 O(n2)。代碼如下:
public class Solution { public List<List<Integer>> threeSum(int[] nums) { List<List<Integer>> res = new ArrayList<>(); // 注意不能是new List<>(); List是接口 if (nums == null || nums.length < 3) { return res; } Arrays.sort(nums); for (int i = 0; i < nums.length - 2; i++) { if (nums[i] > 0) { break; } if (i > 0 && nums[i] == nums[i - 1]) { continue; } int sum = -nums[i]; int left = i + 1, right = nums.length - 1; while (left < right) { if (nums[left] + nums[right] == sum) { ArrayList<Integer> triplet = new ArrayList<>(); triplet.add(nums[i]); triplet.add(nums[left]); triplet.add(nums[right]); res.add(triplet); while (left < right && nums[left++] == nums[left]) {} while (left < right && nums[right--] == nums[right]) {} } else if (nums[left] + nums[right] < sum) { while (left < right && nums[left++] == nums[left]) {} } else { while (left < right && nums[right--] == nums[right]) {} } } } return res; } }