轉載: http://star.aust.edu.cn/~xjfang/AiPrinciple/logical.html
邏輯等價式
| ~~A<=>A | 雙重否定 |
| A∧A<=>A | 等冪律 |
| A∨A<=>A | |
| A∧B<=>B∧A | 交換律 |
| A∨B<=>B∨A | |
| (A∧B)∧C<=>A∧(B∧C) | 結合律 |
| (A∨B)∨C<=>A∨(B∨C) | |
| A∧(B∨C)<=>(A∧B)∨(A∧C) | 分配律 |
| A∨(B∧C)<=>(A∨B)∧(A∨C) | |
| A∧(A∨B)<=>A | 吸收律 |
| A∨(A∧B)<=>A | |
| ~(A∧B)<=>~A∨~B | 摩根定律 |
| ~(A∨B)<=>~A∧~B | |
| A→B<=>~A∨B | 蘊含表達式 |
| A<->B<=>(A→B)∧(B→A) | 等價表達式 |
| A∧T<=>A | |
| A∧F<=>F | |
| A∨T<=>T | |
| A∨F<=>A | |
| A∧<=>F | 矛盾律 |
| A∨~A<=>T | 排中律 |
| A→(B→C)<=>A∧B→C | 輸出律 |
| (A→B)∧(A→~B)<=>~A | 歸謬律 |
| A→B<=>~B→~A | 逆反律 |
| A中不含約束變元 | |
| A中不含約束變元 | |
| 量詞分配律 | |
| ~ |
量詞轉換律 |
| ~ |
|
| 量詞轄域擴張及收縮律(P為不含約束變元x的謂詞公式) | |
| 量詞交換律 | |
| 量詞分配律 | |
| P→ |
|
| P→ |
常用邏輯蘊含式
| A==>A∨B | 附加律 |
| A∧B==>A,A∧B==>B | 簡化律 |
| (A→B)∧A===>B | 假言推理 |
| (A→B)∧~B===>~A | 拒取式 |
| (A∨B)∧~A===>B | 析取三段論 |
| (A→B)∧(B→C)===>A→C | 假言三段論 |
| A→B===>(B→C)→(A→C) | |
| (A→B)∧(C→D)===>A∧C→B∧D | |
| (A<->B)∧(B<->C)===>A<->C | |
| A,B===>A∧B | |
| 全稱指定規則(Universal specification,簡稱US) | |
| 存在指定規則(Existential specification,簡稱ES) | |
| A(y)===> |
全稱推廣規則(Universal Generalization,簡稱UG) |
| A(y)===> |
存在推廣規則(Existential Generalization,簡稱EG) |
