邏輯等價式


轉載: http://star.aust.edu.cn/~xjfang/AiPrinciple/logical.html

邏輯等價式
~~A<=>A 雙重否定
A∧A<=>A 等冪律
A∨A<=>A
A∧B<=>B∧A 交換律
A∨B<=>B∨A
(A∧B)∧C<=>A∧(B∧C) 結合律
(A∨B)∨C<=>A∨(B∨C)
A∧(B∨C)<=>(A∧B)∨(A∧C) 分配律
A∨(B∧C)<=>(A∨B)∧(A∨C)
A∧(A∨B)<=>A 吸收律
A∨(A∧B)<=>A
~(A∧B)<=>~A∨~B 摩根定律
~(A∨B)<=>~A∧~B
A→B<=>~A∨B 蘊含表達式
A<->B<=>(A→B)∧(B→A) 等價表達式
A∧T<=>A
A∧F<=>F
A∨T<=>T
A∨F<=>A
A∧<=>F 矛盾律
A∨~A<=>T 排中律
A→(B→C)<=>A∧B→C 輸出律
(A→B)∧(A→~B)<=>~A 歸謬律
A→B<=>~B→~A 逆反律
xA<=>A A中不含約束變元
xA<=>A A中不含約束變元
x(A(x)∧B(x))<=>xA(x)∧xB(x) 量詞分配律
x(A(x)∨B(x))<=>xA(x)∨xB(x)
xA(x)<=>x~A(x) 量詞轉換律
xA(x)<=>x~A(x)
xA(x)∧P<=>x(A(x)∧P) 量詞轄域擴張及收縮律(P為不含約束變元x的謂詞公式)
xA(x)∨P<=>x(A(x)∨P)
xA(x)∧P<=>x(A(x)∧P)
xA(x)∨P<=>x(A(x)∨P)
xyP(x,y)<=>yxP(x,y) 量詞交換律
xyP(x,y)<=>yxP(x,y)
xA(x)→P<=>x(A(x)→P) 量詞分配律
xA(x)→P<=>x(A(x)→P)
P→xA(x)<=>x(P→A(x))
P→xA(x)<=>x(P→A(x))

常用邏輯蘊含式

A==>A∨B 附加律
A∧B==>A,A∧B==>B 簡化律
(A→B)∧A===>B 假言推理
(A→B)∧~B===>~A 拒取式
(A∨B)∧~A===>B 析取三段論
(A→B)∧(B→C)===>A→C 假言三段論
A→B===>(B→C)→(A→C)  
(A→B)∧(C→D)===>A∧C→B∧D  
(A<->B)∧(B<->C)===>A<->C  
A,B===>A∧B  
xA(x)===>A(y) 全稱指定規則(Universal specification,簡稱US)
xA(x)===>A(y) 存在指定規則(Existential specification,簡稱ES)
A(y)===>xA(x) 全稱推廣規則(Universal Generalization,簡稱UG)
A(y)===>xA(x) 存在推廣規則(Existential Generalization,簡稱EG)
xA(x)===>xA(x)  
xA(x)∨xB(x)===>x(A(x)∨B(x))  
x(A(x)∧B(x))===>xA(x)∧xB(x)  
xyP(x,y)===>yxP(x,y)  
yxP(x,y)===>xyP(x,y)  
xyP(x,y)===>xyP(x,y)  


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM