逻辑等价式


转载: http://star.aust.edu.cn/~xjfang/AiPrinciple/logical.html

逻辑等价式
~~A<=>A 双重否定
A∧A<=>A 等幂律
A∨A<=>A
A∧B<=>B∧A 交换律
A∨B<=>B∨A
(A∧B)∧C<=>A∧(B∧C) 结合律
(A∨B)∨C<=>A∨(B∨C)
A∧(B∨C)<=>(A∧B)∨(A∧C) 分配律
A∨(B∧C)<=>(A∨B)∧(A∨C)
A∧(A∨B)<=>A 吸收律
A∨(A∧B)<=>A
~(A∧B)<=>~A∨~B 摩根定律
~(A∨B)<=>~A∧~B
A→B<=>~A∨B 蕴含表达式
A<->B<=>(A→B)∧(B→A) 等价表达式
A∧T<=>A
A∧F<=>F
A∨T<=>T
A∨F<=>A
A∧<=>F 矛盾律
A∨~A<=>T 排中律
A→(B→C)<=>A∧B→C 输出律
(A→B)∧(A→~B)<=>~A 归谬律
A→B<=>~B→~A 逆反律
xA<=>A A中不含约束变元
xA<=>A A中不含约束变元
x(A(x)∧B(x))<=>xA(x)∧xB(x) 量词分配律
x(A(x)∨B(x))<=>xA(x)∨xB(x)
xA(x)<=>x~A(x) 量词转换律
xA(x)<=>x~A(x)
xA(x)∧P<=>x(A(x)∧P) 量词辖域扩张及收缩律(P为不含约束变元x的谓词公式)
xA(x)∨P<=>x(A(x)∨P)
xA(x)∧P<=>x(A(x)∧P)
xA(x)∨P<=>x(A(x)∨P)
xyP(x,y)<=>yxP(x,y) 量词交换律
xyP(x,y)<=>yxP(x,y)
xA(x)→P<=>x(A(x)→P) 量词分配律
xA(x)→P<=>x(A(x)→P)
P→xA(x)<=>x(P→A(x))
P→xA(x)<=>x(P→A(x))

常用逻辑蕴含式

A==>A∨B 附加律
A∧B==>A,A∧B==>B 简化律
(A→B)∧A===>B 假言推理
(A→B)∧~B===>~A 拒取式
(A∨B)∧~A===>B 析取三段论
(A→B)∧(B→C)===>A→C 假言三段论
A→B===>(B→C)→(A→C)  
(A→B)∧(C→D)===>A∧C→B∧D  
(A<->B)∧(B<->C)===>A<->C  
A,B===>A∧B  
xA(x)===>A(y) 全称指定规则(Universal specification,简称US)
xA(x)===>A(y) 存在指定规则(Existential specification,简称ES)
A(y)===>xA(x) 全称推广规则(Universal Generalization,简称UG)
A(y)===>xA(x) 存在推广规则(Existential Generalization,简称EG)
xA(x)===>xA(x)  
xA(x)∨xB(x)===>x(A(x)∨B(x))  
x(A(x)∧B(x))===>xA(x)∧xB(x)  
xyP(x,y)===>yxP(x,y)  
yxP(x,y)===>xyP(x,y)  
xyP(x,y)===>xyP(x,y)  


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM