转载: http://star.aust.edu.cn/~xjfang/AiPrinciple/logical.html
逻辑等价式
| ~~A<=>A | 双重否定 |
| A∧A<=>A | 等幂律 |
| A∨A<=>A | |
| A∧B<=>B∧A | 交换律 |
| A∨B<=>B∨A | |
| (A∧B)∧C<=>A∧(B∧C) | 结合律 |
| (A∨B)∨C<=>A∨(B∨C) | |
| A∧(B∨C)<=>(A∧B)∨(A∧C) | 分配律 |
| A∨(B∧C)<=>(A∨B)∧(A∨C) | |
| A∧(A∨B)<=>A | 吸收律 |
| A∨(A∧B)<=>A | |
| ~(A∧B)<=>~A∨~B | 摩根定律 |
| ~(A∨B)<=>~A∧~B | |
| A→B<=>~A∨B | 蕴含表达式 |
| A<->B<=>(A→B)∧(B→A) | 等价表达式 |
| A∧T<=>A | |
| A∧F<=>F | |
| A∨T<=>T | |
| A∨F<=>A | |
| A∧<=>F | 矛盾律 |
| A∨~A<=>T | 排中律 |
| A→(B→C)<=>A∧B→C | 输出律 |
| (A→B)∧(A→~B)<=>~A | 归谬律 |
| A→B<=>~B→~A | 逆反律 |
| A中不含约束变元 | |
| A中不含约束变元 | |
| 量词分配律 | |
| ~ |
量词转换律 |
| ~ |
|
| 量词辖域扩张及收缩律(P为不含约束变元x的谓词公式) | |
| 量词交换律 | |
| 量词分配律 | |
| P→ |
|
| P→ |
常用逻辑蕴含式
| A==>A∨B | 附加律 |
| A∧B==>A,A∧B==>B | 简化律 |
| (A→B)∧A===>B | 假言推理 |
| (A→B)∧~B===>~A | 拒取式 |
| (A∨B)∧~A===>B | 析取三段论 |
| (A→B)∧(B→C)===>A→C | 假言三段论 |
| A→B===>(B→C)→(A→C) | |
| (A→B)∧(C→D)===>A∧C→B∧D | |
| (A<->B)∧(B<->C)===>A<->C | |
| A,B===>A∧B | |
| 全称指定规则(Universal specification,简称US) | |
| 存在指定规则(Existential specification,简称ES) | |
| A(y)===> |
全称推广规则(Universal Generalization,简称UG) |
| A(y)===> |
存在推广规则(Existential Generalization,简称EG) |
