轉自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html
布隆過濾器[1](Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的。它實際上是由一個很長的二進制向量和一系列隨機映射函數組成,布隆過濾器可以用於檢索一個元素是否在一個集合中。它的優點是空間效率和查詢時間都遠遠超過一般的算法,缺點是有一定的誤識別率(假正例False positives,即Bloom Filter報告某一元素存在於某集合中,但是實際上該元素並不在集合中)和刪除困難,但是沒有識別錯誤的情形(即假反例False negatives,如果某個元素確實沒有在該集合中,那么Bloom Filter 是不會報告該元素存在於集合中的,所以不會漏報)。
在日常生活中,包括在設計計算機軟件時,我們經常要判斷一個元素是否在一個集合中。比如在字處理軟件中,需要檢查一個英語單詞是否拼寫正確(也就是要判斷 它是否在已知的字典中);在 FBI,一個嫌疑人的名字是否已經在嫌疑名單上;在網絡爬蟲里,一個網址是否被訪問過等等。最直接的方法就是將集合中全部的元素存在計算機中,遇到一個新 元素時,將它和集合中的元素直接比較即可。一般來講,計算機中的集合是用哈希表(hash table)來存儲的。它的好處是快速准確,缺點是費存儲空間。當集合比較小時,這個問題不顯著,但是當集合巨大時,哈希表存儲效率低的問題就顯現出來 了。比如說,一個象 Yahoo,Hotmail 和 Gmai 那樣的公眾電子郵件(email)提供商,總是需要過濾來自發送垃圾郵件的人(spamer)的垃圾郵件。一個辦法就是記錄下那些發垃圾郵件的 email 地址。由於那些發送者不停地在注冊新的地址,全世界少說也有幾十億個發垃圾郵件的地址,將他們都存起來則需要大量的網絡服務器。如果用哈希表,每存儲一億 個 email 地址, 就需要 1.6GB 的內存(用哈希表實現的具體辦法是將每一個 email 地址對應成一個八字節的信息指紋(詳見:googlechinablog.com/2006/08/blog-post.html), 然后將這些信息指紋存入哈希表,由於哈希表的存儲效率一般只有 50%,因此一個 email 地址需要占用十六個字節。一億個地址大約要 1.6GB, 即十六億字節的內存)。因此存貯幾十億個郵件地址可能需要上百 GB 的內存。除非是超級計算機,一般服務器是無法存儲的[2]。(該段引用谷歌數學之美:http://www.google.com.hk/ggblog/googlechinablog/2007/07/bloom-filter_7469.html)
基本概念
如果想判斷一個元素是不是在一個集合里,一般想到的是將所有元素保存起來,然后通過比較確定。鏈表,樹等等數據結構都是這種思路. 但是隨着集合中元素的增加,我們需要的存儲空間越來越大,檢索速度也越來越慢。不過世界上還有一種叫作散列表(又叫哈希表,Hash table)的數據結構。它可以通過一個Hash函數將一個元素映射成一個位陣列(Bit Array)中的一個點。這樣一來,我們只要看看這個點是不是 1 就知道可以集合中有沒有它了。這就是布隆過濾器的基本思想。
Hash面臨的問題就是沖突。假設 Hash 函數是良好的,如果我們的位陣列長度為 m 個點,那么如果我們想將沖突率降低到例如 1%, 這個散列表就只能容納 m/100 個元素。顯然這就不叫空間有效了(Space-efficient)。解決方法也簡單,就是使用多個 Hash,如果它們有一個說元素不在集合中,那肯定就不在。如果它們都說在,雖然也有一定可能性它們在說謊,不過直覺上判斷這種事情的概率是比較低的。
優點
相比於其它的數據結構,布隆過濾器在空間和時間方面都有巨大的優勢。布隆過濾器存儲空間和插入/查詢時間都是常數。另外, Hash 函數相互之間沒有關系,方便由硬件並行實現。布隆過濾器不需要存儲元素本身,在某些對保密要求非常嚴格的場合有優勢。
布隆過濾器可以表示全集,其它任何數據結構都不能;
k 和 m 相同,使用同一組 Hash 函數的兩個布隆過濾器的交並差運算可以使用位操作進行。
缺點
但是布隆過濾器的缺點和優點一樣明顯。誤算率(False Positive)是其中之一。隨着存入的元素數量增加,誤算率隨之增加。但是如果元素數量太少,則使用散列表足矣。
另外,一般情況下不能從布隆過濾器中刪除元素. 我們很容易想到把位列陣變成整數數組,每插入一個元素相應的計數器加1, 這樣刪除元素時將計數器減掉就可以了。然而要保證安全的刪除元素並非如此簡單。首先我們必須保證刪除的元素的確在布隆過濾器里面. 這一點單憑這個過濾器是無法保證的。另外計數器回繞也會造成問題。
False positives 概率推導
假設 Hash 函數以等概率條件選擇並設置 Bit Array 中的某一位,m 是該位數組的大小,k 是 Hash 函數的個數。
而對於給定的False Positives概率 p,如何選擇最優的位數組大小 m 呢,
上式表明,位數組的大小最好與插入元素的個數成線性關系,對於給定的 m,n,k,假正例概率最大為:
Bloom Filter 用例
Google 著名的分布式數據庫 Bigtable 使用了布隆過濾器來查找不存在的行或列,以減少磁盤查找的IO次數[3]。
Squid 網頁代理緩存服務器在 cache digests 中使用了也布隆過濾器[4]。
在很多Key-Value系統中也使用了布隆過濾器來加快查詢過程,如 Hbase,Accumulo,Leveldb,一般而言,Value 保存在磁盤中,訪問磁盤需要花費大量時間,然而使用布隆過濾器可以快速判斷某個Key對應的Value是否存在,因此可以避免很多不必要的磁盤IO操作,只是引入布隆過濾器會帶來一定的內存消耗,下圖是在Key-Value系統中布隆過濾器的典型使用: