現在給你一個深圳地鐵圖。小明從市民中心上車,計算他到深圳所有地鐵站所需時間(簡化每個站到下一個站只花2分鍾)。這就是迪傑斯特拉算法干的事。
歷史:Dijkstra thought about the shortest path problem when working at the Mathematical Center in Amsterdam in 1956 as a programmer to demonstrate capabilities of a new computer called ARMAC. His objective was to choose both a problem as well as an answer (that would be produced by computer) that non-computing people could understand. He designed the shortest path algorithm and later implemented it for ARMAC for a slightly simplified transportation map of 64 cities in the Netherlands (64, so that 6 bits would be sufficient to encode the city number).[1] A year later, he came across another problem from hardware engineers working on the institute's next computer: minimize the amount of wire needed to connect the pins on the back panel of the machine. As a solution, he re-discovered the algorithm known as Prim's minimal spanning tree algorithm (known earlier to Jarník, and also rediscovered by Prim).[5][6] Dijkstra published the algorithm in 1959, two years after Prim and 29 years after Jarník.。
大概意思就是D這個人吶在MC工作,他在檢驗當時一個叫ARMAC機的能力。他想設計一個問題和算法讓普通人都能明白,於是拿起了荷蘭64座城市地圖。之后又做了一些事情,比如PRIM算法,以及利用這些算法解決了插接線的問題啥的。后來他在1959年就把這算法發表了。
代碼:
#include <iostream> using namespace std; const int maxnum = 100; const int maxint = 999999; // 各數組都從下標1開始 int dist[maxnum]; // 表示當前點到源點的最短路徑長度 int prev[maxnum]; // 記錄當前點的前一個結點 int c[maxnum][maxnum]; // 記錄圖的兩點間路徑長度 int n, line; // 圖的結點數和路徑數 // n -- n nodes // v -- the source node // dist[] -- the distance from the ith node to the source node // prev[] -- the previous node of the ith node // c[][] -- every two nodes' distance void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum]) { //步驟1------------初始化------------- bool s[maxnum]; // 判斷是否已存入該點到S集合中 for(int i=1; i<=n; ++i) { dist[i] = c[v][i]; s[i] = 0; // 初始都未用過該點 if(dist[i] == maxint) prev[i] = 0; else prev[i] = v; } dist[v] = 0; s[v] = 1; // 依次將未放入S集合的結點中,取dist[]最小值的結點,放入結合S中 // 一旦S包含了所有V中頂點,dist就記錄了從源點到所有其他頂點之間的最短路徑長度 // 注意是從第二個節點開始,第一個為源點 //-----------步驟2--找到最小的並納入------------- //maxint 是無窮 //v是0點 //tmp是 找的最小點u的dis for(i=2; i<=n; ++i) { int tmp = maxint; int u = v; for(int j=1; j<=n; ++j) if((!s[j]) && dist[j]<tmp) { u = j; // u保存當前鄰接點中距離最小的點的號碼 tmp = dist[j]; } s[u] = 1; // 表示u點已存入S集合中 //----------步驟3--更新dist------------------ //u 是剛剛找到最小點 //s 是並入集合 //newdist,dist[u]+c[u][j] 是0-u點距離+u到個點距離 //dist[j]是個0-點的距離 //prev[j]是個點的前一點 for(j=1; j<=n; ++j) if((!s[j]) && c[u][j]<maxint) { int newdist = dist[u] + c[u][j]; if(newdist < dist[j]) { dist[j] = newdist; prev[j] = u; } } } //步驟2,3重復n-1 } // 查找從源點v到終點u的路徑,並輸出 void searchPath(int *prev,int v, int u) { int que[maxnum]; int tot = 1; que[tot] = u; tot++; int tmp = prev[u]; while(tmp != v) { que[tot] = tmp; tot++; tmp = prev[tmp]; } que[tot] = v; for(int i=tot; i>=1; --i) if(i != 1) cout << que[i] << " -> "; else cout << que[i] << endl; } int main() { freopen("input.txt", "r", stdin); // 各數組都從下標1開始 // 輸入結點數 cin >> n; // 輸入路徑數 cin >> line; int p, q, len; // 輸入p, q兩點及其路徑長度 // 初始化c[][]為maxint for(int i=1; i<=n; ++i) for(int j=1; j<=n; ++j) c[i][j] = maxint; for(i=1; i<=line; ++i) { cin >> p >> q >> len; if(len < c[p][q]) // 有重邊 { c[p][q] = len; // p指向q c[q][p] = len; // q指向p,這樣表示無向圖 } } for(i=1; i<=n; ++i) dist[i] = maxint; for(i=1; i<=n; ++i) { for(int j=1; j<=n; ++j) printf("%8d", c[i][j]); printf("\n"); } Dijkstra(n, 1, dist, prev, c); for(int k=1;k<n;k++) { // 最短路徑長度 cout <<"源點到頂點"<<k+1<<" 的最短路徑長度:" << dist[k+1] <<" "; // 路徑 cout <<"源點到頂點"<<k+1<<" 的路徑為: "; searchPath(prev, 1, k+1); } }
例子:
算法步驟如下:
1. 初使時令 S={V0},T={其余頂點},T中頂點對應的距離值
若存在<V0,Vi>,d(V0,Vi)為<V0,Vi>弧上的權值
若不存在<V0,Vi>,d(V0,Vi)為∝
2. 從T中選取一個其距離值為最小的頂點W且不在S中,加入S
|
初始化 |
S1納入2(10最小) |
S1納入4(30最小) |
S1納入3(50最小) |
S1納入5(60最小) |
2 |
10 |
10 |
10 |
10 |
10 |
3 |
無窮 |
10+50<無窮 60 |
30+20< 60 50 |
50 |
50 |
4 |
30 |
10+無窮>30 30 |
30 |
30 |
30 |
5 |
100 |
10+無窮>100 100 |
30+60<100 90 |
50+10<90 60 |
60 |
S1 |
{1} |
{1,2} |
{1,2,4} |
{1,2,4,3} |
{1,2,4,3,5} |
S2 |
{2,3,4,5} |
{3,4,5} |
{3,5} |
{5} |
{} |
dis |
|
Dis2=10 |
Dis4=30 |
Dis3=50 |
Dis5=60 |
pre |
Pre2=1 Pre4=1 Pre5=1 |
pre3=2 |
Pre3=4 Pre5=4 |
Pre5=3 |
|