重點介紹HashMap。首先介紹一下什么是Map。在數組中我們是通過數組下標來對其內容索引的,而在Map中我們通過對象來對對象進行索引,用來索引的對象叫做key,其對應的對象叫做value。在下文中會有例子具體說明。
再來看看HashMap和TreeMap有什么區別。HashMap通過hashcode對其內容進行快速查找,而TreeMap中所有的元素都保持着某種固定的順序,如果你需要得到一個有序的結果你就應該使用TreeMap(HashMap中元素的排列順序是不固定的)。
import java.util.Map; import java.util.HashMap; import java.util.Set; import java.util.HashSet; import java.util.Iterator; import java.util.Hashtable; import java.util.TreeMap; class HashMaps { public static void main(String[] args) { Map map=new HashMap(); map.put("a", "aaa"); map.put("b", "bbb"); map.put("c", "ccc"); map.put("d", "ddd"); Iterator iterator = map.keySet().iterator(); while (iterator.hasNext()) { Object key = iterator.next(); System.out.println("map.get(key) is :"+map.get(key)); } Hashtable tab=new Hashtable(); tab.put("a", "aaa"); tab.put("b", "bbb"); tab.put("c", "ccc"); tab.put("d", "ddd"); Iterator iterator_1 = tab.keySet().iterator(); while (iterator_1.hasNext()) { Object key = iterator_1.next(); System.out.println("tab.get(key) is :"+tab.get(key)); } TreeMap tmp=new TreeMap(); tmp.put("a", "aaa"); tmp.put("b", "bbb"); tmp.put("c", "ccc"); tmp.put("d", "ddd"); Iterator iterator_2 = tmp.keySet().iterator(); while (iterator_2.hasNext()) { Object key = iterator_2.next(); System.out.println("tmp.get(key) is :"+tmp.get(key)); } } }
執行完后,果然是這樣的(hashmap是沒有順序的,而treemap則是按順序排列的哦!!)
下面就要進入本文的主題了。先舉個例子說明一下怎樣使用HashMap:
import java.util.*; public class Exp1 { public static void main(String[] args){ HashMap h1=new HashMap(); Random r1=new Random(); for(int i=0;i<1000;i++){ Integer t=new Integer(r1.nextInt(20)); if(h1.containsKey(t)) ((Ctime)h1.get(t)).count++; else h1.put(t, new Ctime()); } System.out.println(h1); } } class Ctime{ int count=1; public String toString(){ return Integer.toString(count); } }
在HashMap中通過get()來獲取value,通過put()來插入value,ContainsKey()則用來檢驗對象是否已經存在。可以看出,和ArrayList的操作相比,HashMap除了通過key索引其內容之外,別的方面差異並不大。
前面介紹了,HashMap是基於HashCode的,在所有對象的超類Object中有一個HashCode()方法,但是它和equals方法一樣,並不能適用於所有的情況,這樣我們就需要重寫自己的HashCode()方法。下面就舉這樣一個例子:
import java.util.*; public class Exp2 { public static void main(String[] args){ HashMap h2=new HashMap(); for(int i=0;i<10;i++) h2.put(new Element(i), new Figureout()); System.out.println("h2:"); System.out.println("Get the result for Element:"); Element test=new Element(5); if(h2.containsKey(test)) System.out.println((Figureout)h2.get(test)); else System.out.println("Not found"); } } class Element{ int number; public Element(int n){ number=n; } } class Figureout{ Random r=new Random(); boolean possible=r.nextDouble()>0.5; public String toString(){ if(possible) return "OK!"; else return "Impossible!"; } }
在這個例子中,Element用來索引對象Figureout,也即Element為key,Figureout為value。在Figureout中隨機生成一個浮點數,如果它比0.5大,打印"OK!",否則打印"Impossible!"。之后查看Element(5)對應的Figureout結果如何。
結果卻發現,無論你運行多少次,得到的結果都是"Not found"。也就是說索引Element(5)並不在HashMap中。這怎么可能呢?
原因得慢慢來說:Element的HashCode方法繼承自Object,而Object中的HashCode方法返回的HashCode對應於當前的地址,也就是說對於不同的對象,即使它們的內容完全相同,用HashCode()返回的值也會不同。這樣實際上違背了我們的意圖。因為我們在使用HashMap時,希望利用相同內容的對象索引得到相同的目標對象,這就需要HashCode()在此時能夠返回相同的值。在上面的例子中,我們期望new Element(i) (i=5)與 Element test=new Element(5)是相同的,而實際上這是兩個不同的對象,盡管它們的內容相同,但它們在內存中的地址不同。因此很自然的,上面的程序得不到我們設想的結果。下面對Element類更改如下:
class Element{ int number; public Element(int n){ number=n; } public int hashCode(){ return number; } public boolean equals(Object o){ return (o instanceof Element) && (number==((Element)o).number); } }
在這里Element覆蓋了Object中的hashCode()和equals()方法。覆蓋hashCode()使其以number的值作為hashcode返回,這樣對於相同內容的對象來說它們的hashcode也就相同了。而覆蓋equals()是為了在HashMap判斷兩個key是否相等時使結果有意義(有關重寫equals()的內容可以參考我的另一篇文章《重新編寫Object類中的方法 》)。修改后的程序運行結果如下:
h2:
Get the result for Element:
Impossible!
請記住:如果你想有效的使用HashMap,你就必須重寫在其的HashCode()。還有兩條重寫HashCode()的原則:
不必對每個不同的對象都產生一個唯一的hashcode,只要你的HashCode方法使get()能夠得到put()放進去的內容就可以了。即"不為一原則"。 生成hashcode的算法盡量使hashcode的值分散一些,不要很多hashcode都集中在一個范圍內,這樣有利於提高HashMap的性能。即"分散原則"。
本文轉自http://blog.csdn.net/scy411082514/article/details/9223807