虛擬機Ubuntu16,caffe環境搭建


虛擬機下的Ubuntu16.04+caffe+onlycup

 

官網的step很重要,要跟着官網,的步驟來:http://caffe.berkeleyvision.org/installation.html

然后對照:http://blog.csdn.net/firethelife/article/details/51926754

 

======================【關於注意和報錯】===================

-------------------------------------------------------------------------------------

caffe下make 的時候遇到的一些找不到ldhf5之類的錯誤,則要安裝libhdf5,如下解決:

sudo apt-get install libhdf5-dev

-------------------------------------------------------------------------------------

【http://www.linuxidc.com/Linux/2016-07/132860.htm】

首先安裝必要的庫,有的依賴庫我是已經安裝過的,具體安裝的先后關系已經忘了。如果出現有些依賴關系不滿足的錯誤,可以再安裝庫:

$ sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev    # 必要的基本庫

根據上面的鏈接下載OpenCV3.1.0版本,並進行解壓,解壓之后進入安裝文件目錄:

$ cd opencv-3.1.0
$ mkdir build          #創建build文件夾
$ cd opencv-3.1.0/build
$ cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..  

----------------------------------------------------------------------------------

OpenBLAS:

The default directory is /opt/OpenBLAS     /*這個是默認安裝路徑*/

$ git clone https://github.com/xianyi/OpenBLAS.git

【http://www.linuxdiyf.com/linux/15610.html】

則需要安裝,安裝的步驟如下:

(1)git clone https://github.com/xianyi/OpenBLAS.git

(2)cd OpenBLAS

(3)make FC=gfortran (如果沒有安裝gfortran,執行sudo apt-get install gfortran)

(4) make install (將OpenBLAS安裝到/opt下)

裝好后,對應 caffe下Makefile.config修改如下:

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /opt/OpenBLAS/include
BLAS_LIB := /opt/OpenBLAS/lib

-----------------------------------------------------------------------------------

caffe,,,make 的時候會發生一些錯誤,查看caffe下Makefile.config,修改:

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/

其中:/usr/include/hdf5/serial/是hdf5的位置。

---------------------------------------------------------------------------------------

【http://blog.csdn.net/lanxuecc/article/details/51997919】

runtest時會報一個錯::build_release/tools/caffe: error while loading shared libraries: libopenblas.so.0: cannot open shared object file: No such file or directory,解決方法:在/usr/lib/下建立一個 軟鏈接將 libopenblas.so.0指向/openbls安裝目錄/lib/ libopenblas.so.0

-----\

在/usr/lib/下建立一個 軟鏈接將 libopenblas.so.0指向/openbls安裝目錄/lib/ libopenblas.so.0
ln -s /opt/OpenBLAS/lib/libopenblas.so.0 /usr/lib/libopenblas.so.0

------------------------------------------------------------------------------------

 

============= caffe下Makefile.config最終的樣子如下==================

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /opt/OpenBLAS/include
BLAS_LIB := /opt/OpenBLAS/lib

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
#PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

 

-----------------------------------------------------------------------------------------------

感想:在Windows和虛擬機Ubuntu16下都搭好了環境了,好想大聲喊一句:鬼知道我這四天經歷了什么。。。。幸好你沒有放棄!!!

花了2天的時間明白:cuda是英偉達的顯卡,而我的機子是【計算機右鍵-屬性-適配器-(最后一項)顯示適配器:AMD】AMD的,所以裝了cuda進不去Ubuntu的圖形界面,在這里開啟了各種重裝的坎坷路程。。。。整整話了兩天啊。。。我的媽呀!!!幸好,堅持了下來!!:)加油。

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM