注:1、每一個模型都沒有做數據處理
2、調用方式都是一樣的»»» 引入model → fit數據 → predict,后面只記錄導入模型語句。
導入數據:
from sklearn import datasets iris = datasets.load_iris() print "The iris' target names: ",iris.target_names x = iris.data y = iris.target
線性回歸:
from sklearn import linear_model linear = linear_model.LinearRegression() linear.fit(x,y) print "linear's score: ",linear.score(x,y) linear.coef_ #系數 linear.intercept_ #截距 print "predict: ",linear.predict([[7,5,2,0.5],[7.5,4,7,2]])
logistic回歸:
from sklearn import linear_model logistic = linear_model.LogisticRegression()
決策樹:
from sklearn import tree tree = tree.DecisionTreeClassifier(criterion='entropy') # 可選Gini、Information Gain、Chi-square、entropy
支持向量機:
from sklearn import svm svm = svm.SVC()
朴素貝葉斯:
from sklearn import naive_bayes bayes = naive_bayes.GaussianNB()
KNN:
from sklearn import neighbors KNN = neighbors.KNeighborsClassifier(n_neighbors = 3)