[LeetCode] Rotate Function 旋轉函數


 

Given an array of integers A and let n to be its length.

Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:

F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].

Calculate the maximum value of F(0), F(1), ..., F(n-1).

Note:
n is guaranteed to be less than 105.

Example:

A = [4, 3, 2, 6]

F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26

So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.

 

這道題是LeetCode第四次比賽的第一道題,博主第一道題就沒有做出來,博主寫了個O(n2)的方法並不能通過OJ的大數據集合,后來網上看大家的解法都是很好的找到了規律,可以在O(n)時間內完成。現在想想找規律的能力真的挺重要,比如之前那道Elimination Game也靠找規律,而用傻方法肯定超時,然后博主發現自己腦子不夠活,很難想到正確的方法,說出來全是淚啊T.T。好了,來解題吧,我們為了找規律,先把具體的數字抽象為A,B,C,D,那么我們可以得到:

F(0) = 0A + 1B + 2C +3D

F(1) = 0D + 1A + 2B +3C

F(2) = 0C + 1D + 2A +3B

F(3) = 0B + 1C + 2D +3A

那么,我們通過仔細觀察,我們可以得出下面的規律:

sum = 1A + 1B + 1C + 1D

F(1) = F(0) + sum - 4D

F(2) = F(1) + sum - 4C

F(3) = F(2) + sum - 4B

那么我們就找到規律了, F(i) = F(i-1) + sum - n*A[n-i],可以寫出代碼如下:

 

class Solution {
public:
    int maxRotateFunction(vector<int>& A) {
        int t = 0, sum = 0, n = A.size();
        for (int i = 0; i < n; ++i) {
            sum += A[i];
            t += i * A[i];
        }
        int res = t;
        for (int i = 1; i < n; ++i) {
            t = t + sum - n * A[n - i];
            res = max(res, t);
        }
        return res;
    }
};

 

參考資料:

https://leetcode.com/problems/rotate-function/

https://leetcode.com/problems/rotate-function/discuss/87853/Java-O(n)-solution-with-explanation

https://leetcode.com/problems/rotate-function/discuss/87842/Java-Solution-O(n)-with-non-mathametical-explaination

 

LeetCode All in One 題目講解匯總(持續更新中...)


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM