模數轉換器(ADC)的基本原理【轉】


模數轉換器(ADC)的基本原理 
模擬信號轉換為數字信號,一般分為四個步驟進行,即取樣、保持、量化和編碼。前兩個步驟在取樣-保持電路中完成,后兩步驟則在ADC中完成。

常用的ADC有積分型、逐次逼近型、並行比較型/串並行型、Σ -Δ調制型、電容陣列逐次比較型及壓頻變換型。下面簡要介紹常用的幾種類型的基本原理及特點:

1 積分型(如TLC7135) 。積分型ADC工作原理是將輸入電壓轉換成時間或頻率,然后由定時器/計數器獲得數字值。其優點是用簡單電路就能獲得高分辨率,但缺點是由於轉換精度依賴於積分時間,因此轉換速率極低。初期的單片ADC大多采用積分型,現在逐次比較型已逐步成為主流。雙積分是一種常用的AD 轉換技術,具有精度高,抗干擾能力強等優點。但高精度的雙積分AD芯片,價格較貴,增加了單片機系統的成本。

2 逐次逼近型(如TLC0831) 。逐次逼近型AD由一個比較器和DA轉換器通過逐次比較邏輯構成,從MSB開始,順序地對每一位將輸入電壓與內置DA轉換器輸出進行比較,經n次比較而輸出數字值。其電路規模屬於中等。其優點是速度較高、功耗低,在低分辨率( < 12位)時價格便宜,但高精度( > 12位)時價格很高。

3 並行比較型/串並行比較型(如TLC5510) 。並行比較型AD采用多個比較器,僅作一次比較而實行轉換,又稱FLash型。由於轉換速率極高, n位的轉換需要2n - 1個比較器,因此電路規模也極大,價格也高,只適用於視頻AD 轉換器等速度特別高的領域。串並行比較型AD結構上介於並行型和逐次比較型之間,最典型的是由2個n /2位的並行型AD轉換器配合DA轉換器組成,用兩次比較實行轉換,所以稱為Halfflash型。

4 Σ-Δ調制型(如AD7701) 。Σ- Δ型ADC以很低的采樣分辨率( 1位)和很高的采樣速率將模擬信號數字化,通過使用過采樣、噪聲整形和數字濾波等方法增加有效分辨率,然后對ADC輸出進行采樣抽取處理以降低有效采樣速率。Σ-Δ型ADC的電路結構是由非常簡單的模擬電路和十分復雜的數字信號處理電路構成。

5 電容陣列逐次比較型。電容陣列逐次比較型AD在內置DA轉換器中采用電容矩陣方式,也可稱為電荷再分配型。一般的電阻陣列DA轉換器中多數電阻的值必須一致,在單芯片上生成高精度的電阻並不容易。如果用電容陣列取代電阻陣列,可以用低廉成本制成高精度單片AD轉換器。最近的逐次比較型AD轉換器大多為電容陣列式的。

6 壓頻變換型(如AD650) 。壓頻變換型是通過間接轉換方式實現模數轉換的。其原理是首先將輸入的模擬信號轉換成頻率,然后用計數器將頻率轉換成數字量。從理論上講這種AD的分辨率幾乎可以無限增加,只要采樣的時間能夠滿足輸出頻率分辨率要求的累積脈沖個數的寬度。其優點是分辨率高、功耗低、價格低,但是需要外部計數電路共同完成AD轉換。

數模轉換器(DAC)的基本原理 
DAC的內部電路構成無太大差異,一般按輸出是電流還是電壓、能否作乘法運算等進行分類。大多數DAC由電阻陣列和n個電流開關(或電壓開關)構成。按數字輸入值切換開關,產生比例於輸入的電流(或電壓) 。此外,也有為了改善精度而把恆流源放入器件內部的。DAC分為電壓型和電流型兩大類,電壓型DAC有權電阻網絡、T型電阻網絡和樹形開關網絡等;電流型DAC有權電流型電阻網絡和倒T型電阻網絡等。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM