POJ3624 Charm Bracelet(典型01背包問題)


Time Limit: 1000MS          Memory Limit: 65536K          Total Submissions: 32897          Accepted: 14587

Description

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

Output

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input

4 6
1 4
2 6
3 12
2 7

Sample Output

23

一、題目大意

      有N個物品,分別有不同的重量Wi和價值Di,Bessie只能帶走重量不超過M的物品,要是總價值最大,並輸出總價值。

 

二、解題思路

     典型的動態規划題目,用一個數組記錄背包各個重量的最優解,不斷地更新直到窮盡所有可能性。

     狀態更新公式:state[weight] = max{state[weight-W[i]]+D[i], state[weight]}

 

三、具體代碼 

 1 // 背包問題(動態規划)
 2 #include <iostream> 
 3 #include <cstdio>
 4 #include <cstring>
 5 #define MAXN 3402
 6 #define MAXM 12880
 7 using namespace std;
 8 
 9 int main(){
10     int N, M, W[MAXN+5], D[MAXN+5], dp[MAXM+5];
11     while(scanf("%d%d", &N, &M) != EOF){
12         for(int i=0; i<N; i++){
13             scanf("%d%d", &W[i], &D[i]);
14         }
15         memset(dp, 0, sizeof(dp));
16         for(int i=0; i<N; i++){
17             for(int left_w=M; left_w>=W[i]; left_w--){
18                 dp[left_w] = max(dp[left_w-W[i]]+D[i], dp[left_w]);
19             }
20         }
21         printf("%d\n", dp[M]);
22     }
23     
24     return 0;
25 } 
View Code

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM