《SIFT原理與源碼分析》系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html
OpenCV提供FeatureDetector實現特征檢測及匹配
class CV_EXPORTS FeatureDetector { public: virtual ~FeatureDetector(); void detect( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const; void detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const; virtual void read(const FileNode&); virtual void write(FileStorage&) const; static Ptr<FeatureDetector> create( const string& detectorType ); protected: ... };
FeatureDetetor是虛類,通過定義FeatureDetector的對象可以使用多種特征檢測方法。通過create()函數調用:
Ptr<FeatureDetector> FeatureDetector::create(const string& detectorType);
OpenCV 2.4.3提供了10種特征檢測方法:
- "FAST" – FastFeatureDetector
- "STAR" – StarFeatureDetector
- "SIFT" – SIFT (nonfree module)
- "SURF" – SURF (nonfree module)
- "ORB" – ORB
- "MSER" – MSER
- "GFTT" – GoodFeaturesToTrackDetector
- "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled
- "Dense" – DenseFeatureDetector
- "SimpleBlob" – SimpleBlobDetector
圖片中的特征大體可分為三種:點特征、線特征、塊特征。
FAST算法是Rosten提出的一種快速提取的點特征[1],Harris與GFTT也是點特征,更具體來說是角點特征(
參考這里)。
SimpleBlob是簡單塊特征,可以通過設置
SimpleBlobDetector的參數決定提取圖像塊的主要性質,提供5種:
顏色 By color、面積 By area、圓形度 By circularity、最大inertia (不知道怎么翻譯)與最小inertia的比例 By ratio of the minimum inertia to maximum inertia、以及凸性 By convexity.
最常用的當屬SIFT,尺度不變特征匹配算法(
參考這里);以及后來發展起來的SURF,都可以看做較為復雜的塊特征。這兩個算法在OpenCV nonfree的模塊里面,需要在附件引用項中添加opencv_nonfree243.lib,同時在代碼中加入:
initModule_nonfree();
至於其他幾種算法,我就不太了解了 ^_^
一個簡單的使用演示:
int main() { initModule_nonfree();//if use SIFT or SURF Ptr<FeatureDetector> detector = FeatureDetector::create( "SIFT" ); Ptr<DescriptorExtractor> descriptor_extractor = DescriptorExtractor::create( "SIFT" ); Ptr<DescriptorMatcher> descriptor_matcher = DescriptorMatcher::create( "BruteForce" ); if( detector.empty() || descriptor_extractor.empty() ) throw runtime_error("fail to create detector!"); Mat img1 = imread("images\\box_in_scene.png"); Mat img2 = imread("images\\box.png"); //detect keypoints; vector<KeyPoint> keypoints1,keypoints2; detector->detect( img1, keypoints1 ); detector->detect( img2, keypoints2 ); cout <<"img1:"<< keypoints1.size() << " points img2:" <<keypoints2.size() << " points" << endl << ">" << endl; //compute descriptors for keypoints; cout << "< Computing descriptors for keypoints from images..." << endl; Mat descriptors1,descriptors2; descriptor_extractor->compute( img1, keypoints1, descriptors1 ); descriptor_extractor->compute( img2, keypoints2, descriptors2 ); cout<<endl<<"Descriptors Size: "<<descriptors2.size()<<" >"<<endl; cout<<endl<<"Descriptor's Column: "<<descriptors2.cols<<endl <<"Descriptor's Row: "<<descriptors2.rows<<endl; cout << ">" << endl; //Draw And Match img1,img2 keypoints Mat img_keypoints1,img_keypoints2; drawKeypoints(img1,keypoints1,img_keypoints1,Scalar::all(-1),0); drawKeypoints(img2,keypoints2,img_keypoints2,Scalar::all(-1),0); imshow("Box_in_scene keyPoints",img_keypoints1); imshow("Box keyPoints",img_keypoints2); descriptor_extractor->compute( img1, keypoints1, descriptors1 ); vector<DMatch> matches; descriptor_matcher->match( descriptors1, descriptors2, matches ); Mat img_matches; drawMatches(img1,keypoints1,img2,keypoints2,matches,img_matches,Scalar::all(-1),CV_RGB(255,255,255),Mat(),4); imshow("Mathc",img_matches); waitKey(10000); return 0; }
特征檢測結果如圖:

Box_in_scene

Box
特征點匹配結果:

Match
另一點需要一提的是SimpleBlob的實現是有Bug的。不能直接通過 Ptr<FeatureDetector> detector = FeatureDetector::create("SimpleBlob"); 語句來調用,而應該直接創建 SimpleBlobDetector的對象:
Mat image = imread("images\\features.jpg"); Mat descriptors; vector<KeyPoint> keypoints; SimpleBlobDetector::Params params; //params.minThreshold = 10; //params.maxThreshold = 100; //params.thresholdStep = 10; //params.minArea = 10; //params.minConvexity = 0.3; //params.minInertiaRatio = 0.01; //params.maxArea = 8000; //params.maxConvexity = 10; //params.filterByColor = false; //params.filterByCircularity = false; SimpleBlobDetector blobDetector( params ); blobDetector.create("SimpleBlob"); blobDetector.detect( image, keypoints ); drawKeypoints(image, keypoints, image, Scalar(255,0,0));
以下是SimpleBlobDetector按顏色檢測的圖像特征:

[1] Rosten. Machine Learning for High-speed Corner Detection, 2006
本文轉自:http://blog.csdn.net/xiaowei_cqu/article/details/8652096
