1、DLT定義
DLT是一個 用於解決包含尺度問題的最小二乘問題 的算法。
DLT解決問題的標准形式為:

另一種表現形式為:
或者

這種模型在投影幾何中會經常遇到。
例如,針孔相機投影模型,3D點到圖像平面的投影關系;
兩視圖幾何中的單應性矩陣(Homography);
2、DLT求解
因為尺度
的存在,因為不能用線性齊次最小二乘法直接求解。
由(1)(2)式子可知:
和
的方向是相同的,即叉乘結果為0:

對(3)用叉乘矩陣來表示:

對於(4)式,可參考:向量叉乘與叉乘矩陣
對(4)式進行變型就可以得到一個線性齊次最小二乘求解問題。可以參考:最小二乘法
3、舉例

![A=\left[{\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}}
\end{array}}\right]](/image/aHR0cDovL2xhdGV4LmNvZGVjb2dzLmNvbS9naWYubGF0ZXg_QSUzZCU1Y2xlZnQlNWIlN2IlNWNiZWdpbiU3YmFycmF5JTdkJTdiKiU3YjIwJTdkJTdiYyU3ZCU3ZCUwYSU3YiU3YmFfJTdiMTElN2QlN2QlN2QlMjYlN2IlN2JhXyU3YjEyJTdkJTdkJTdkJTI2JTdiJTdiYV8lN2IxMyU3ZCU3ZCU3ZCU1YyU1YyUwYSU3YiU3YmFfJTdiMjElN2QlN2QlN2QlMjYlN2IlN2JhXyU3YjIyJTdkJTdkJTdkJTI2JTdiJTdiYV8lN2IyMyU3ZCU3ZCU3ZCUwYSU1Y2VuZCU3YmFycmF5JTdkJTdkJTVjcmlnaHQlNWQ=.png)
由公式(4):
![{\left[{{x_k}}\right]_\times}A{y_k}=\left[{\begin{array}{*{20}{c}}
{{x_{2k}}}&{-{x_{1k}}}
\end{array}}\right]\left[{\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}}
\end{array}}\right]\left[{\begin{array}{*{20}{c}}
{{y_{1k}}}\\
{{y_{2k}}}\\
{{y_{3k}}}
\end{array}}\right]](/image/aHR0cDovL2xhdGV4LmNvZGVjb2dzLmNvbS9naWYubGF0ZXg_JTdiJTVjbGVmdCU1YiU3YiU3YnhfayU3ZCU3ZCU1Y3JpZ2h0JTVkXyU1Y3RpbWVzJTdkQSU3YnlfayU3ZCUzZCU1Y2xlZnQlNWIlN2IlNWNiZWdpbiU3YmFycmF5JTdkJTdiKiU3YjIwJTdkJTdiYyU3ZCU3ZCUwYSU3YiU3YnhfJTdiMmslN2QlN2QlN2QlMjYlN2ItJTdieF8lN2IxayU3ZCU3ZCU3ZCUwYSU1Y2VuZCU3YmFycmF5JTdkJTdkJTVjcmlnaHQlNWQlNWNsZWZ0JTViJTdiJTVjYmVnaW4lN2JhcnJheSU3ZCU3YiolN2IyMCU3ZCU3YmMlN2QlN2QlMGElN2IlN2JhXyU3YjExJTdkJTdkJTdkJTI2JTdiJTdiYV8lN2IxMiU3ZCU3ZCU3ZCUyNiU3YiU3YmFfJTdiMTMlN2QlN2QlN2QlNWMlNWMlMGElN2IlN2JhXyU3YjIxJTdkJTdkJTdkJTI2JTdiJTdiYV8lN2IyMiU3ZCU3ZCU3ZCUyNiU3YiU3YmFfJTdiMjMlN2QlN2QlN2QlMGElNWNlbmQlN2JhcnJheSU3ZCU3ZCU1Y3JpZ2h0JTVkJTVjbGVmdCU1YiU3YiU1Y2JlZ2luJTdiYXJyYXklN2QlN2IqJTdiMjAlN2QlN2JjJTdkJTdkJTBhJTdiJTdieV8lN2IxayU3ZCU3ZCU3ZCU1YyU1YyUwYSU3YiU3YnlfJTdiMmslN2QlN2QlN2QlNWMlNWMlMGElN2IlN2J5XyU3YjNrJTdkJTdkJTdkJTBhJTVjZW5kJTdiYXJyYXklN2QlN2QlNWNyaWdodCU1ZA==.png)
展開:
![\begin{array}{l}
{\left[{{x_k}}\right]_\times}A{y_k}=\;{a_{11}}{x_{2k}}{y_{1k}}-{a_{21}}{x_{1k}}{y_{1k}}+{a_{12}}{x_{2k}}{y_{2k}}\\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;-{a_{22}}{x_{1k}}{y_{2k}}+{a_{13}}{x_{2k}}{y_{3k}}-{a_{23}}{x_{1k}}{y_{3k}}
\end{array}](/image/aHR0cDovL2xhdGV4LmNvZGVjb2dzLmNvbS9naWYubGF0ZXg_JTVjYmVnaW4lN2JhcnJheSU3ZCU3YmwlN2QlMGElN2IlNWNsZWZ0JTViJTdiJTdieF9rJTdkJTdkJTVjcmlnaHQlNWRfJTVjdGltZXMlN2RBJTdieV9rJTdkJTNkJTVjJTNiJTdiYV8lN2IxMSU3ZCU3ZCU3YnhfJTdiMmslN2QlN2QlN2J5XyU3YjFrJTdkJTdkLSU3YmFfJTdiMjElN2QlN2QlN2J4XyU3YjFrJTdkJTdkJTdieV8lN2IxayU3ZCU3ZCUyYiU3YmFfJTdiMTIlN2QlN2QlN2J4XyU3YjJrJTdkJTdkJTdieV8lN2IyayU3ZCU3ZCU1YyU1YyUwYSU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYiU1YyUzYi0lN2JhXyU3YjIyJTdkJTdkJTdieF8lN2IxayU3ZCU3ZCU3YnlfJTdiMmslN2QlN2QlMmIlN2JhXyU3YjEzJTdkJTdkJTdieF8lN2IyayU3ZCU3ZCU3YnlfJTdiM2slN2QlN2QtJTdiYV8lN2IyMyU3ZCU3ZCU3YnhfJTdiMWslN2QlN2QlN2J5XyU3YjNrJTdkJTdkJTBhJTVjZW5kJTdiYXJyYXklN2Q=.png)
寫成矩陣的形式:
![{\left[{{x_k}}\right]_\times}A{y_k}={b_k}a=0](/image/aHR0cDovL2xhdGV4LmNvZGVjb2dzLmNvbS9naWYubGF0ZXg_JTdiJTVjbGVmdCU1YiU3YiU3YnhfayU3ZCU3ZCU1Y3JpZ2h0JTVkXyU1Y3RpbWVzJTdkQSU3YnlfayU3ZCUzZCU3YmJfayU3ZGElM2Qw.png)
其中:
![a=\left[{\begin{array}{*{20}{c}}
{{a_{11}}}\\
{{a_{21}}}\\
{{a_{12}}}\\
{{a_{22}}}\\
{{a_{13}}}\\
{{a_{23}}}
\end{array}}\right]](/image/aHR0cDovL2xhdGV4LmNvZGVjb2dzLmNvbS9naWYubGF0ZXg_YSUzZCU1Y2xlZnQlNWIlN2IlNWNiZWdpbiU3YmFycmF5JTdkJTdiKiU3YjIwJTdkJTdiYyU3ZCU3ZCUwYSU3YiU3YmFfJTdiMTElN2QlN2QlN2QlNWMlNWMlMGElN2IlN2JhXyU3YjIxJTdkJTdkJTdkJTVjJTVjJTBhJTdiJTdiYV8lN2IxMiU3ZCU3ZCU3ZCU1YyU1YyUwYSU3YiU3YmFfJTdiMjIlN2QlN2QlN2QlNWMlNWMlMGElN2IlN2JhXyU3YjEzJTdkJTdkJTdkJTVjJTVjJTBhJTdiJTdiYV8lN2IyMyU3ZCU3ZCU3ZCUwYSU1Y2VuZCU3YmFycmF5JTdkJTdkJTVjcmlnaHQlNWQ=.png)
