多項式曲線擬合:org.apache.commons.math3.fitting.PolynomialCurveFitter類。
用法示例代碼:
- // ... 創建並初始化輸入數據:
- double[] x = new double[...];
- double[] y = new double[...];
- 將原始的x-y數據序列合成帶權重的觀察點數據序列:
- WeightedObservedPoints points = new WeightedObservedPoints();
- // 將x-y數據元素調用points.add(x[i], y[i])加入到觀察點序列中
- // ...
- PolynomialCurveFitter fitter = PolynomialCurveFitter.create(degree); // degree 指定多項式階數
- double[] result = fitter.fit(points.toList()); // 曲線擬合,結果保存於雙精度數組中,由常數項至最高次冪系數排列
首先要准備好待擬合的曲線數據x和y,這是兩個double數組,然后把這兩個數組合並到WeightedObservedPoints對象實例中,可以調用WeightedObservedPoints.add(x[i], y[i])將x和y序列中的數據逐個添加到觀察點序列對象中。隨后創建PolynomialCurveFitter對象,創建時要指定擬合多項式的階數,注意階數要選擇適當,不是越高越好,否則擬合誤差會很大。最后調用PolynomialCurveFitter的fit方法即可完成多項式曲線擬合,fit方法的參數通過WeightedObservedPoints.toList()獲得。擬合結果通過一個double數組返回,按元素順序依次是常數項、一次項、二次項、……。
完整的演示代碼如下:
package fitting; import org.apache.commons.math3.fitting.PolynomialCurveFitter; import org.apache.commons.math3.fitting.WeightedObservedPoints; import java.util.ArrayList; import java.util.List; public class TimeCostCalculator { public static void main(String[] args) throws Exception { TimeCostCalculator tcc = new TimeCostCalculator(); double timeCost = tcc.calcTimeCost(new CalcCurveFitting()); System.out.println("--------------------------------------------------------------------------"); System.out.println("time cost is: " + timeCost + "s"); System.out.println("--------------------------------------------------------------------------"); } /** * 計算指定對象的運行時間開銷。 * * @param curveFitting 指定被測對象。 * @return 返回sub.run的時間開銷,單位為s。 * @throws Exception */ public double calcTimeCost(CurveFitting curveFitting) throws Exception { List<Object> params = curveFitting.getParams(); long startTime = System.nanoTime(); Object result = curveFitting.run(params); long stopTime = System.nanoTime(); curveFitting.printResult(result); System.out.println("start: " + startTime + " / stop: " + stopTime); return 1.0e-9 * (stopTime - startTime); } } interface CurveFitting { public List<Object> getParams(); public Object run(List<Object> params) throws Exception; public void printResult(Object result); } class CalcCurveFitting implements CurveFitting { private WeightedObservedPoints points; private final int degree = 5; // 階數 public CalcCurveFitting() { int arrayLength = 200000; System.out.println(String.format("本算例用於計算多項式曲線擬合。正在初始化計算數據(%s點,%s階......", arrayLength, degree)); double[] inputDataX = new double[arrayLength]; // inputDataX = new double[] {1, 2, 3, 4, 5, 6, 7}; double[] inputDataY = new double[inputDataX.length]; double[] factor = new double[degree + 1]; // N階多項式會有N+1個系數,其中之一為常數項 for (int index = 0; index < factor.length; index++) { factor[index] = index + 1; } for (int index = 0; index < inputDataY.length; index++) { inputDataX[index] = index * 0.00001; inputDataY[index] = calcPoly(inputDataX[index], factor); // y = sum(x[n) * fact[n]) // System.out.print(inputDataY[index] + ", "); } points = new WeightedObservedPoints(); for (int index = 0; index < inputDataX.length; index++) { points.add(inputDataX[index], inputDataY[index]); } System.out.println("init completely"); } @Override public List<Object> getParams() { List<Object> params = new ArrayList<Object>(); params.add(points); return params; } @Override public Object run(List<Object> params) throws Exception { PolynomialCurveFitter fitter = PolynomialCurveFitter.create(degree); WeightedObservedPoints points = (WeightedObservedPoints) params.get(0); double[] result = fitter.fit(points.toList()); return result; } @Override public void printResult(Object result) { for (double data : (double[]) result) { System.out.println(data); } } private double calcPoly(double x, double[] factor) { double y = 0; for (int deg = 0; deg < factor.length; deg++) { y += Math.pow(x, deg) * factor[deg]; } return y; } }
http://blog.csdn.net/kingfox/article/details/44118319