reduce個數究竟和哪些因素有關


reduce的數目究竟和哪些因素有關

 

 

1、我們知道map的數量和文件數、文件大小、塊大小、以及split大小有關,而reduce的數量跟哪些因素有關呢?

 設置mapred.tasktracker.reduce.tasks.maximum的大小能夠決定單個tasktracker一次性啟動reduce的數目,可是不能決定總的reduce數目。



  conf.setNumReduceTasks(4);JobConf對象的這種方法能夠用來設定總的reduce的數目,看下Job Counters的統計:

 

 

	Job Counters 
		Data-local map tasks=2
		Total time spent by all maps waiting after reserving slots (ms)=0
		Total time spent by all reduces waiting after reserving slots (ms)=0
		SLOTS_MILLIS_MAPS=10695
		SLOTS_MILLIS_REDUCES=29502
		Launched map tasks=2
		Launched reduce tasks=4

 

 確實啟動了4個reduce:看下輸出:

 

diegoball@diegoball:~/IdeaProjects/test/build/classes$ hadoop fs -ls  /user/diegoball/join_ou1123
11/03/25 15:28:45 INFO security.Groups: Group mapping impl=org.apache.hadoop.security.ShellBasedUnixGroupsMapping; cacheTimeout=300000
11/03/25 15:28:45 WARN conf.Configuration: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
Found 5 items
-rw-r--r--   1 diegoball supergroup          0 2011-03-25 15:28 /user/diegoball/join_ou1123/_SUCCESS
-rw-r--r--   1 diegoball supergroup        124 2011-03-25 15:27 /user/diegoball/join_ou1123/part-00000
-rw-r--r--   1 diegoball supergroup          0 2011-03-25 15:27 /user/diegoball/join_ou1123/part-00001
-rw-r--r--   1 diegoball supergroup        214 2011-03-25 15:28 /user/diegoball/join_ou1123/part-00002
-rw-r--r--   1 diegoball supergroup          0 2011-03-25 15:28 /user/diegoball/join_ou1123/part-00003

 僅僅有2個reduce在干活。為什么呢?

shuffle的過程。須要依據key的值決定將這條<K,V> (map的輸出),送到哪一個reduce中去。送到哪一個reduce中去靠調用默認的org.apache.hadoop.mapred.lib.HashPartitioner的getPartition()方法來實現。
HashPartitioner類:

package org.apache.hadoop.mapred.lib;

import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.mapred.Partitioner;
import org.apache.hadoop.mapred.JobConf;

/** Partition keys by their {@link Object#hashCode()}. 
 */
@InterfaceAudience.Public
@InterfaceStability.Stable
public class HashPartitioner<K2, V2> implements Partitioner<K2, V2> {

  public void configure(JobConf job) {}

  /** Use {@link Object#hashCode()} to partition. */
  public int getPartition(K2 key, V2 value,
                          int numReduceTasks) {
    return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
  }
}

 numReduceTasks的值在JobConf中能夠設置。

默認的是1:顯然太小。


   這也是為什么默認的設置中總啟動一個reduce的原因。

   返回與運算的結果和numReduceTasks求余。

   Mapreduce依據這個返回結果決定將這條<K,V>,送到哪一個reduce中去。



key傳入的是LongWritable類型,看下這個LongWritable類的hashcode()方法:

 

 public int hashCode() {
    return (int)value;
  }

 簡簡單單的返回了原值的整型值。

 由於getPartition(K2 key, V2 value,int numReduceTask)返回的結果僅僅有2個不同的值,所以終於僅僅有2個reduce在干活。
 

 HashPartitioner是默認的partition類。我們也能夠自己定義partition類 :

 package com.alipay.dw.test;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.Partitioner;

/**
 * Created by IntelliJ IDEA.
 * User: diegoball
 * Date: 11-3-10
 * Time: 下午5:26
 * To change this template use File | Settings | File Templates.
 */
public class MyPartitioner implements Partitioner<IntWritable, IntWritable> {
    public int getPartition(IntWritable key, IntWritable value, int numPartitions) {
        /* Pretty ugly hard coded partitioning function. Don't do that in practice, it is just for the sake of understanding. */
        int nbOccurences = key.get();
        if (nbOccurences > 20051210)
            return 0;
        else
            return 1;
    }

    public void configure(JobConf arg0) {

    }
}

 只須要覆蓋getPartition()方法就OK。

通過:
conf.setPartitionerClass(MyPartitioner.class);
能夠設置自己定義的partition類。
相同因為之返回2個不同的值0,1,無論conf.setNumReduceTasks(4);設置多少個reduce,也相同僅僅會有2個reduce在干活。

因為每一個reduce的輸出key都是經過排序的,上述自己定義的Partitioner還能夠達到排序結果集的目的:

 

11/03/25 15:24:49 WARN conf.Configuration: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
Found 5 items
-rw-r--r--   1 diegoball supergroup          0 2011-03-25 15:23 /user/diegoball/opt.del/_SUCCESS
-rw-r--r--   1 diegoball supergroup      24546 2011-03-25 15:23 /user/diegoball/opt.del/part-00000
-rw-r--r--   1 diegoball supergroup      10241 2011-03-25 15:23 /user/diegoball/opt.del/part-00001
-rw-r--r--   1 diegoball supergroup          0 2011-03-25 15:23 /user/diegoball/opt.del/part-00002
-rw-r--r--   1 diegoball supergroup          0 2011-03-25 15:23 /user/diegoball/opt.del/part-00003

 part-00000和part-00001是這2個reduce的輸出,因為使用了自己定義的MyPartitioner,全部key小於20051210的的<K,V>都會放到第一個reduce中處理。key大於20051210就會被放到第二個reduce中處理。


每一個reduce的輸出key又是經過key排序的,所以終於的結果集降序排列。


可是假設使用上面自己定義的partition類,又conf.setNumReduceTasks(1)的話。會如何? 看下Job Counters:

	Job Counters 
		Data-local map tasks=2
		Total time spent by all maps waiting after reserving slots (ms)=0
		Total time spent by all reduces waiting after reserving slots (ms)=0
		SLOTS_MILLIS_MAPS=16395
		SLOTS_MILLIS_REDUCES=3512
		Launched map tasks=2
		Launched reduce tasks=1

  僅僅啟動了一個reduce。
  (1)、 當setNumReduceTasks( int a) a=1(即默認值),無論Partitioner返回不同值的個數b為多少,僅僅啟動1個reduce,這樣的情況下自己定義的Partitioner類沒有起到不論什么作用。


  (2)、 若a!=1:
   a、當setNumReduceTasks( int a)里 a設置小於Partitioner返回不同值的個數b的話:

    public int getPartition(IntWritable key, IntWritable value, int numPartitions) {
        /* Pretty ugly hard coded partitioning function. Don't do that in practice, it is just for the sake of understanding. */
        int nbOccurences = key.get();
        if (nbOccurences < 20051210)
            return 0;
        if (nbOccurences >= 20051210 && nbOccurences < 20061210)
            return 1;
        if (nbOccurences >= 20061210 && nbOccurences < 20081210)
            return 2;
        else
            return 3;
    }
 

  同一時候設置setNumReduceTasks( 2)。

 

 於是拋出異常:

  11/03/25 17:03:41 INFO mapreduce.Job: Task Id : attempt_201103241018_0023_m_000000_1, Status : FAILED
java.io.IOException: Illegal partition for 20110116 (3)
	at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.collect(MapTask.java:900)
	at org.apache.hadoop.mapred.MapTask$OldOutputCollector.collect(MapTask.java:508)
	at com.alipay.dw.test.KpiMapper.map(Unknown Source)
	at com.alipay.dw.test.KpiMapper.map(Unknown Source)
	at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:54)
	at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:397)
	at org.apache.hadoop.mapred.MapTask.run(MapTask.java:330)
	at org.apache.hadoop.mapred.Child$4.run(Child.java:217)
	at java.security.AccessController.doPrivileged(Native Method)
	at javax.security.auth.Subject.doAs(Subject.java:396)
	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:742)
	at org.apache.hadoop.mapred.Child.main(Child.java:211) 

 某些key沒有找到所相應的reduce去處。

原因是僅僅啟動了a個reduce。
 
   b、當setNumReduceTasks( int a)里 a設置大於Partitioner返回不同值的個數b的話,相同會啟動a個reduce。可是僅僅有b個redurce上會得到數據。啟動的其它的a-b個reduce浪費了。

 

   c、理想狀況是a=b,這樣能夠合理利用資源,負載更均衡。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM