圖像的二值化:
與邊緣檢測相比,輪廓檢測有時能更好的反映圖像的內容。而要對圖像進行輪廓檢測,則必須要先對圖像進行二值化,圖像的二值化就是將圖像上的像素點的灰度值設置為0或255,這樣將使整個圖像呈現出明顯的黑白效果。在數字圖像處理中,二值圖像占有非常重要的地位,圖像的二值化使圖像中數據量大為減少,從而能凸顯出目標的輪廓。
下面就介紹OpenCV中對圖像進行二值化的關鍵函數——cvThreshold()。
函數功能:采用Canny方法對圖像進行邊緣檢測
函數原型:
void cvThreshold(
const CvArr* src, 第一個參數表示輸入圖像,必須為單通道灰度圖。
CvArr* dst, 第二個參數表示輸出的邊緣圖像,為單通道黑白圖。
double threshold, 第三個參數表示閾值
double max_value, 第四個參數表示最大值
int threshold_type 第五個參數表示運算方法。
);
在OpenCV的imgproc\types_c.h中可以找到運算方法的定義。
enum
{
CV_THRESH_BINARY =0, value = value > threshold ? max_value : 0
CV_THRESH_BINARY_INV =1, value = value > threshold ? 0 : max_value
CV_THRESH_TRUNC =2, value = value > threshold ? threshold : value
CV_THRESH_TOZERO =3, value = value > threshold ? value : 0
CV_THRESH_TOZERO_INV =4, value = value > threshold ? 0 : value
CV_THRESH_MASK =7,
CV_THRESH_OTSU =8 use Otsu algorithm to choose the optimal threshold value;
combine the flag with one of the above CV_THRESH_* values
};
#include "stdafx.h"
#include "iostream"
using namespace std;
#include "opencv2/opencv.hpp"
IplImage *pGrayImage = NULL;
IplImage *pBinaryImage = NULL;
const char *pImagePath = "E:/C_VC_code/Text_Photo/girl001.jpg";
const char *pGrayWindowsTitle = "原圖";
const char *pBinaryWindowsTitle = "二值圖";
const char *pWindowsToolBarTitle = "閥值";
void onCallBack(int pos)
{
//change into binary image
cvThreshold(pGrayImage, pBinaryImage, pos, 255, CV_THRESH_BINARY);
cvShowImage(pBinaryWindowsTitle,pBinaryImage);
}
int main()
{
//load srcouse image from file
//IplImage *pImage = cvLoadImage(pImagePath, CV_LOAD_IMAGE_UNCHANGED);
//load gray image from srcouce file image
//pGrayImage = cvLoadImage(pImagePath, CV_LOAD_IMAGE_GRAYSCALE);//直接從原圖獲取灰度圖
//cvCvtColor(pImage,pGrayImage,CV_BGR2GRAY);
//間接轉化為灰度圖
IplImage *pImage = cvLoadImage(pImagePath, CV_LOAD_IMAGE_UNCHANGED);
pGrayImage = cvCreateImage(cvGetSize(pImage), IPL_DEPTH_8U,1);
cvCvtColor(pImage, pGrayImage, CV_BGR2GRAY);
pBinaryImage = cvCreateImage(cvGetSize(pGrayImage), IPL_DEPTH_8U,1);
//create window and show orial image
cvNamedWindow(pGrayWindowsTitle,CV_WINDOW_AUTOSIZE);
cvNamedWindow(pBinaryWindowsTitle,CV_WINDOW_AUTOSIZE);
//creat slide bar
int pos = 1;
cvCreateTrackbar(pWindowsToolBarTitle, pBinaryWindowsTitle, &pos, 100,onCallBack);
onCallBack(0);
cvShowImage(pGrayWindowsTitle,pGrayImage);
cvShowImage(pBinaryWindowsTitle,pBinaryImage);
cvWaitKey(0);
cvDestroyWindow(pBinaryWindowsTitle);
cvDestroyWindow(pGrayWindowsTitle);
cvReleaseImage(&pGrayImage);
cvReleaseImage(&pBinaryImage);
return 0;
}