在上一篇文章的最后,我們發現InputDispatcher是調用了InputChannel->sendMessage把鍵值發送出去,那么相應的,也有接收鍵值的地方。接收函數是InputChannel->receiveMessage。
在InputConsumer::consume內找到了receiveMessage,從類名能看出來發送端與接收端相當於生產者與消費者的關系。
status_t InputConsumer::consume(InputEventFactoryInterface* factory, bool consumeBatches, nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent) { // Receive a fresh message. status_t result = mChannel->receiveMessage(&mMsg); }
receiveMessage內調用的是socket的接收函數recv
status_t InputChannel::receiveMessage(InputMessage* msg) { do { nRead = ::recv(mFd, msg, sizeof(InputMessage), MSG_DONTWAIT); } while (nRead == -1 && errno == EINTR); }
事件接收端NativeInputEventReceiver
那么究竟是誰來消費這些事件呢,我們在NativeInputEventReceiver里面找到了答案。
在NativeInputEventReceiver內有個事件處理函數handleEvent,該函數是looperCallback的虛函數,NativeInputEventReceiver作為looperCallback的子類,自然有義務實現handleEvent這個函數。handleEvent就可以監聽I/O事件。一旦有I/O事件,如上述的socket send事件,handleEvent就會被啟動,進行后續的處理。
int NativeInputEventReceiver::handleEvent(int receiveFd, int events, void* data) { status_t status = consumeEvents(env, false /*consumeBatches*/, -1, NULL); }
既然有LooperCallback(NativeInputEventReceiver),必然會有Looper。雖然Looper不是本篇文章的研究對象,但是我們有必要理清下面的問題:
- 究竟與NativeInputEventReceiver對應的這個Looper是什么?
- 這個Looper是怎樣與LooperCallback關聯起來的呢?
實際上,一切起始於ViewRootImpl的setView方法:
public void setView(View view, WindowManager.LayoutParams attrs, View panelParentView) { ... //在這里傳入了當前線程的Looper new WindowInputEventReceiver(mInputChannel, Looper.myLooper()); ... }
InputEventReceiver作為WindowInputEventReceiver的子類,會一起被創建出來。在InputEventReceiver的構造方法中,會調用native方法nativeInit
public InputEventReceiver(InputChannel inputChannel, Looper looper) { mInputChannel = inputChannel; mMessageQueue = looper.getQueue(); mReceiverPtr = nativeInit(new WeakReference<InputEventReceiver>(this),inputChannel, mMessageQueue); }
在NativeInputEventReceiver的nativeInit方法中,創建了NativeInputEventReceiver對象,並調用它的initialize方法
static jint nativeInit(JNIEnv* env, jclass clazz, jobject receiverWeak, jobject inputChannelObj, jobject messageQueueObj) { ... sp<NativeInputEventReceiver> receiver = new NativeInputEventReceiver(env, receiverWeak, inputChannel, messageQueue); status_t status = receiver->initialize(); ... }
initialize方法只做了一件事,就是把NativeInputEventReceiver與Looper關聯起來
status_t NativeInputEventReceiver::initialize() { setFdEvents(ALOOPER_EVENT_INPUT); return OK; } void NativeInputEventReceiver::setFdEvents(int events) { if (mFdEvents != events) { mFdEvents = events; int fd = mInputConsumer.getChannel()->getFd(); if (events) { mMessageQueue->getLooper()->addFd(fd, 0, events, this, NULL); } else { mMessageQueue->getLooper()->removeFd(fd); } } }
Looper的方法addFd實現了關聯Looper與LooperCallback(NativeInputEventReceiver)的功能,我們先來分析一下傳給addFd的參數
- fd,fd即inputChannel的socket fd,Looper會偵測該fd的狀態
- events,即傳入的ALOOPER_EVENT_INPUT,只有fd的狀態是INPUT的時候才會觸發調用LooperCallback中的handleEvent方法
- this,即NativeInputEventReceiver,當fd狀態為Input時,NativeInputEventReceiver中的handleEvent方法會被調用
在consumeEvents內,我們能看到調用了InputConsume::consume來接收InputDispatcher發送過來的事件
status_t NativeInputEventReceiver::consumeEvents(JNIEnv* env, bool consumeBatches, nsecs_t frameTime, bool* outConsumedBatch) { for (;;) { status_t status = mInputConsumer.consume(&mInputEventFactory, consumeBatches, frameTime, &seq, &inputEvent); } }
輸入事件在consumeEvents內將會被處理完成,其中包含了四個主要步驟:
- 獲取輸入事件
- 把輸入事件轉換成java也能處理的格式
- 輸入事件分發到相應窗口去處理
- 處理結果反饋
1. 獲取輸入事件已在上面闡述過
2. 輸入事件轉換
以Key為例,輸入事件只是把事件內部的成員拆分,然后通過JNI調用java的構造函數來生成相應的java event對象,后面的事件處理都在java層
jobject inputEventObj; switch (inputEvent->getType()) { case AINPUT_EVENT_TYPE_KEY: inputEventObj = android_view_KeyEvent_fromNative(env, static_cast<KeyEvent*>(inputEvent)); break; // ---------------------------------------------------------------------------- jobject android_view_KeyEvent_fromNative(JNIEnv* env, const KeyEvent* event) { jobject eventObj = env->CallStaticObjectMethod(gKeyEventClassInfo.clazz, gKeyEventClassInfo.obtain, nanoseconds_to_milliseconds(event->getDownTime()), nanoseconds_to_milliseconds(event->getEventTime()), event->getAction(), event->getKeyCode(), event->getRepeatCount(), event->getMetaState(), event->getDeviceId(), event->getScanCode(), event->getFlags(), event->getSource(), NULL); if (env->ExceptionCheck()) { ALOGE("An exception occurred while obtaining a key event."); LOGE_EX(env); env->ExceptionClear(); return NULL; } return eventObj; } public static KeyEvent obtain(long downTime, long eventTime, int action, int code, int repeat, int metaState, int deviceId, int scancode, int flags, int source, String characters) { KeyEvent ev = obtain(); ev.mDownTime = downTime; ev.mEventTime = eventTime; ev.mAction = action; ev.mKeyCode = code; ev.mRepeatCount = repeat; ev.mMetaState = metaState; ev.mDeviceId = deviceId; ev.mScanCode = scancode; ev.mFlags = flags; ev.mSource = source; ev.mCharacters = characters; return ev; }
3.輸入事件分發
這里是在java層的事件分發,最終目的是為了調用到窗口的onTouch這類回調函數。
env->CallVoidMethod(receiverObj.get(), gInputEventReceiverClassInfo.dispatchInputEvent, seq, inputEventObj);
還記得上面InputEventReceiver初始化時的流程嗎?是通過setView--->new WindowInputEventReceiver--->new InputEventReceiver--->new NativeInputEventReceiver這樣一步一步創建的。
通過上述的JNI調用,會調用到WindowInputEventReceiver的dispatchInputEvent方法,不過由於WindowInputEventReceiver並沒有自己實現這個方法,因此會調用父類InputEventReceiver::dispatchInputEvent,內部會真正調用到WindowInputEventReceiver::onInputEvent
public void dispatchInputEvent(InputEvent event) { onInputEvent(event); }
在onInputEvent內,轉到了ViewRootImpl這邊進行處理
public void onInputEvent(InputEvent event) { enqueueInputEvent(event, this, 0, true); } void enqueueInputEvent(InputEvent event, InputEventReceiver receiver, int flags, boolean processImmediately) { doProcessInputEvents(); }
由於事件隊列內會包含多個事件,因此在doProcessInputEvent時,需要分別對所有的事件都進行分發
void doProcessInputEvents() { // Deliver all pending input events in the queue. while (mPendingInputEventHead != null) { QueuedInputEvent q = mPendingInputEventHead; mPendingInputEventHead = q.mNext; if (mPendingInputEventHead == null) { mPendingInputEventTail = null; } q.mNext = null; mPendingInputEventCount -= 1; deliverInputEvent(q); } }
deliverInputEvent會調用到InputState的deliver方法
public final void deliver(QueuedInputEvent q) { if ((q.mFlags & QueuedInputEvent.FLAG_FINISHED) != 0) { forward(q); } else if (shouldDropInputEvent(q)) { finish(q, false); } else { apply(q, onProcess(q)); } }
由於一開始我們的事件還沒有完成,因此不會帶上FLAG_FINISHED,而且我們的事件時一般事件,並不會被丟棄,因此會走apply分支。
首先會調用onProcess處理事件
protected int onProcess(QueuedInputEvent q) { if (q.mEvent instanceof KeyEvent) { return processKeyEvent(q); } else { // If delivering a new non-key event, make sure the window is // now allowed to start updating. handleDispatchDoneAnimating(); final int source = q.mEvent.getSource(); if ((source & InputDevice.SOURCE_CLASS_POINTER) != 0) { return processPointerEvent(q); } else if ((source & InputDevice.SOURCE_CLASS_TRACKBALL) != 0) { return processTrackballEvent(q); } else { return processGenericMotionEvent(q); } } }
以Key為例,我們會調用到processKeyEvent
private int processKeyEvent(QueuedInputEvent q) { // Deliver the key to the view hierarchy. if (mView.dispatchKeyEvent(event)) { return FINISH_HANDLED; } }
然后調用了View類的dispatchKeyEvent方法,最終會調用到onKey這個回調函數
public boolean dispatchKeyEvent(KeyEvent event) { // Give any attached key listener a first crack at the event. //noinspection SimplifiableIfStatement ListenerInfo li = mListenerInfo; if (li != null && li.mOnKeyListener != null && (mViewFlags & ENABLED_MASK) == ENABLED && li.mOnKeyListener.onKey(this, event.getKeyCode(), event)) { return true; } }
4. 處理結果反饋
然后還剩下apply這個方法需要分析。如果onProcess正常處理完成后,會返回FINISH_HANDLED,否則返回FINISHED_NOT_NHANDLED。
protected void apply(QueuedInputEvent q, int result) { if (result == FORWARD) { forward(q); } else if (result == FINISH_HANDLED) { finish(q, true); } else if (result == FINISH_NOT_HANDLED) { finish(q, false); } else { throw new IllegalArgumentException("Invalid result: " + result); } } protected void finish(QueuedInputEvent q, boolean handled) { q.mFlags |= QueuedInputEvent.FLAG_FINISHED; if (handled) { q.mFlags |= QueuedInputEvent.FLAG_FINISHED_HANDLED; } forward(q); } protected void forward(QueuedInputEvent q) { onDeliverToNext(q); } protected void onDeliverToNext(QueuedInputEvent q) { if (mNext != null) { mNext.deliver(q); } else { finishInputEvent(q); } } private void finishInputEvent(QueuedInputEvent q) { if (q.mReceiver != null) { boolean handled = (q.mFlags & QueuedInputEvent.FLAG_FINISHED_HANDLED) != 0; q.mReceiver.finishInputEvent(q.mEvent, handled); } else { q.mEvent.recycleIfNeededAfterDispatch(); } recycleQueuedInputEvent(q); }
mReceiver.finishInputEvent就是NativeInputEvent的finishInputEvent
status_t NativeInputEventReceiver::finishInputEvent(uint32_t seq, bool handled) { status_t status = mInputConsumer.sendFinishedSignal(seq, handled); } status_t InputConsumer::sendFinishedSignal(uint32_t seq, bool handled) { while (!status && chainIndex-- > 0) { status = sendUnchainedFinishedSignal(chainSeqs[chainIndex], handled); } } status_t InputConsumer::sendUnchainedFinishedSignal(uint32_t seq, bool handled) { InputMessage msg; msg.header.type = InputMessage::TYPE_FINISHED; msg.body.finished.seq = seq; msg.body.finished.handled = handled; return mChannel->sendMessage(&msg); }
最后也是調用sendMessage把消息反饋給InputDispatcher。
到這里,上層的處理已經完成,接下來就是InputDispatcher的反饋處理。
InputDispatcher反饋處理
反饋處理在handleReceiveCallback中進行,其中包含兩個部分:
- 接收反饋消息
- 處理反饋消息
int InputDispatcher::handleReceiveCallback(int fd, int events, void* data) { for (;;) { uint32_t seq; bool handled; status = connection->inputPublisher.receiveFinishedSignal(&seq, &handled); if (status) { break; } d->finishDispatchCycleLocked(currentTime, connection, seq, handled); gotOne = true; } }
1. 接收反饋消息
接收反饋消息是調用的inputPublisher的receiveFinishedSignal方法,內部還是調用了mChannel->receiveMessage
status_t InputPublisher::receiveFinishedSignal(uint32_t* outSeq, bool* outHandled) { status_t result = mChannel->receiveMessage(&msg); }
2. 處理反饋消息
處理反饋消息是調用了finishDispatchCycleLocked。
void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection, uint32_t seq, bool handled) { // Notify other system components and prepare to start the next dispatch cycle. onDispatchCycleFinishedLocked(currentTime, connection, seq, handled); }
void InputDispatcher::onDispatchCycleFinishedLocked( nsecs_t currentTime, const sp<Connection>& connection, uint32_t seq, bool handled) { CommandEntry* commandEntry = postCommandLocked( & InputDispatcher::doDispatchCycleFinishedLockedInterruptible); }
postCommandLocked其實也是發送消息給InputDispatcherThread,那么在分發線程下一次處理消息的時候會首先處理doDispatchCycleFinishedLockedInterruptible。
doDispatchCycleFinishedLockedInterruptible是實際上反饋進行處理的地方,其中包含了下面幾個處理步驟:
- 從waitQueue中取出所反饋的事件
- 事件是否處理超時,如果是則做超時處理
- 從waitQueue中刪除所反饋的事件
- 立刻展開下一次的outboundQueue事件監聽
void InputDispatcher::doDispatchCycleFinishedLockedInterruptible( CommandEntry* commandEntry) { // Handle post-event policy actions. DispatchEntry* dispatchEntry = connection->findWaitQueueEntry(seq); if (eventDuration > SLOW_EVENT_PROCESSING_WARNING_TIMEOUT) { String8 msg; msg.appendFormat("Window '%s' spent %0.1fms processing the last input event: ", connection->getWindowName(), eventDuration * 0.000001f); dispatchEntry->eventEntry->appendDescription(msg); ALOGI("%s", msg.string()); } if (dispatchEntry == connection->findWaitQueueEntry(seq)) { connection->waitQueue.dequeue(dispatchEntry); } // Start the next dispatch cycle for this connection. startDispatchCycleLocked(now(), connection); } }