在上一篇文章的最后,我們發現InputDispatcher是調用了InputChannel->sendMessage把鍵值發送出去,那么相應的,也有接收鍵值的地方。接收函數是InputChannel->receiveMessage。
在InputConsumer::consume內找到了receiveMessage,從類名能看出來發送端與接收端相當於生產者與消費者的關系。
status_t InputConsumer::consume(InputEventFactoryInterface* factory,
bool consumeBatches, nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent) {
// Receive a fresh message.
status_t result = mChannel->receiveMessage(&mMsg);
}
receiveMessage內調用的是socket的接收函數recv
status_t InputChannel::receiveMessage(InputMessage* msg) {
do {
nRead = ::recv(mFd, msg, sizeof(InputMessage), MSG_DONTWAIT);
} while (nRead == -1 && errno == EINTR);
}
事件接收端NativeInputEventReceiver
那么究竟是誰來消費這些事件呢,我們在NativeInputEventReceiver里面找到了答案。
在NativeInputEventReceiver內有個事件處理函數handleEvent,該函數是looperCallback的虛函數,NativeInputEventReceiver作為looperCallback的子類,自然有義務實現handleEvent這個函數。handleEvent就可以監聽I/O事件。一旦有I/O事件,如上述的socket send事件,handleEvent就會被啟動,進行后續的處理。
int NativeInputEventReceiver::handleEvent(int receiveFd, int events, void* data) {
status_t status = consumeEvents(env, false /*consumeBatches*/, -1, NULL);
}
既然有LooperCallback(NativeInputEventReceiver),必然會有Looper。雖然Looper不是本篇文章的研究對象,但是我們有必要理清下面的問題:
- 究竟與NativeInputEventReceiver對應的這個Looper是什么?
- 這個Looper是怎樣與LooperCallback關聯起來的呢?
實際上,一切起始於ViewRootImpl的setView方法:
public void setView(View view, WindowManager.LayoutParams attrs, View panelParentView) {
...
//在這里傳入了當前線程的Looper
new WindowInputEventReceiver(mInputChannel, Looper.myLooper());
...
}
InputEventReceiver作為WindowInputEventReceiver的子類,會一起被創建出來。在InputEventReceiver的構造方法中,會調用native方法nativeInit
public InputEventReceiver(InputChannel inputChannel, Looper looper) {
mInputChannel = inputChannel;
mMessageQueue = looper.getQueue();
mReceiverPtr = nativeInit(new WeakReference<InputEventReceiver>(this),inputChannel, mMessageQueue);
}
在NativeInputEventReceiver的nativeInit方法中,創建了NativeInputEventReceiver對象,並調用它的initialize方法
static jint nativeInit(JNIEnv* env, jclass clazz, jobject receiverWeak,
jobject inputChannelObj, jobject messageQueueObj) {
...
sp<NativeInputEventReceiver> receiver = new NativeInputEventReceiver(env,
receiverWeak, inputChannel, messageQueue);
status_t status = receiver->initialize();
...
}
initialize方法只做了一件事,就是把NativeInputEventReceiver與Looper關聯起來
status_t NativeInputEventReceiver::initialize() {
setFdEvents(ALOOPER_EVENT_INPUT);
return OK;
}
void NativeInputEventReceiver::setFdEvents(int events) {
if (mFdEvents != events) {
mFdEvents = events;
int fd = mInputConsumer.getChannel()->getFd();
if (events) {
mMessageQueue->getLooper()->addFd(fd, 0, events, this, NULL);
} else {
mMessageQueue->getLooper()->removeFd(fd);
}
}
}
Looper的方法addFd實現了關聯Looper與LooperCallback(NativeInputEventReceiver)的功能,我們先來分析一下傳給addFd的參數
- fd,fd即inputChannel的socket fd,Looper會偵測該fd的狀態
- events,即傳入的ALOOPER_EVENT_INPUT,只有fd的狀態是INPUT的時候才會觸發調用LooperCallback中的handleEvent方法
- this,即NativeInputEventReceiver,當fd狀態為Input時,NativeInputEventReceiver中的handleEvent方法會被調用

在consumeEvents內,我們能看到調用了InputConsume::consume來接收InputDispatcher發送過來的事件
status_t NativeInputEventReceiver::consumeEvents(JNIEnv* env,
bool consumeBatches, nsecs_t frameTime, bool* outConsumedBatch) {
for (;;) {
status_t status = mInputConsumer.consume(&mInputEventFactory,
consumeBatches, frameTime, &seq, &inputEvent);
}
}
輸入事件在consumeEvents內將會被處理完成,其中包含了四個主要步驟:
- 獲取輸入事件
- 把輸入事件轉換成java也能處理的格式
- 輸入事件分發到相應窗口去處理
- 處理結果反饋
1. 獲取輸入事件已在上面闡述過
2. 輸入事件轉換
以Key為例,輸入事件只是把事件內部的成員拆分,然后通過JNI調用java的構造函數來生成相應的java event對象,后面的事件處理都在java層
jobject inputEventObj;
switch (inputEvent->getType()) {
case AINPUT_EVENT_TYPE_KEY:
inputEventObj = android_view_KeyEvent_fromNative(env,
static_cast<KeyEvent*>(inputEvent));
break;
// ----------------------------------------------------------------------------
jobject android_view_KeyEvent_fromNative(JNIEnv* env, const KeyEvent* event) {
jobject eventObj = env->CallStaticObjectMethod(gKeyEventClassInfo.clazz,
gKeyEventClassInfo.obtain,
nanoseconds_to_milliseconds(event->getDownTime()),
nanoseconds_to_milliseconds(event->getEventTime()),
event->getAction(),
event->getKeyCode(),
event->getRepeatCount(),
event->getMetaState(),
event->getDeviceId(),
event->getScanCode(),
event->getFlags(),
event->getSource(),
NULL);
if (env->ExceptionCheck()) {
ALOGE("An exception occurred while obtaining a key event.");
LOGE_EX(env);
env->ExceptionClear();
return NULL;
}
return eventObj;
}
public static KeyEvent obtain(long downTime, long eventTime, int action,
int code, int repeat, int metaState,
int deviceId, int scancode, int flags, int source, String characters) {
KeyEvent ev = obtain();
ev.mDownTime = downTime;
ev.mEventTime = eventTime;
ev.mAction = action;
ev.mKeyCode = code;
ev.mRepeatCount = repeat;
ev.mMetaState = metaState;
ev.mDeviceId = deviceId;
ev.mScanCode = scancode;
ev.mFlags = flags;
ev.mSource = source;
ev.mCharacters = characters;
return ev;
}
3.輸入事件分發
這里是在java層的事件分發,最終目的是為了調用到窗口的onTouch這類回調函數。
env->CallVoidMethod(receiverObj.get(),
gInputEventReceiverClassInfo.dispatchInputEvent, seq, inputEventObj);
還記得上面InputEventReceiver初始化時的流程嗎?是通過setView--->new WindowInputEventReceiver--->new InputEventReceiver--->new NativeInputEventReceiver這樣一步一步創建的。
通過上述的JNI調用,會調用到WindowInputEventReceiver的dispatchInputEvent方法,不過由於WindowInputEventReceiver並沒有自己實現這個方法,因此會調用父類InputEventReceiver::dispatchInputEvent,內部會真正調用到WindowInputEventReceiver::onInputEvent
public void dispatchInputEvent(InputEvent event) {
onInputEvent(event);
}
在onInputEvent內,轉到了ViewRootImpl這邊進行處理
public void onInputEvent(InputEvent event) {
enqueueInputEvent(event, this, 0, true);
}
void enqueueInputEvent(InputEvent event,
InputEventReceiver receiver, int flags, boolean processImmediately) {
doProcessInputEvents();
}
由於事件隊列內會包含多個事件,因此在doProcessInputEvent時,需要分別對所有的事件都進行分發
void doProcessInputEvents() {
// Deliver all pending input events in the queue.
while (mPendingInputEventHead != null) {
QueuedInputEvent q = mPendingInputEventHead;
mPendingInputEventHead = q.mNext;
if (mPendingInputEventHead == null) {
mPendingInputEventTail = null;
}
q.mNext = null;
mPendingInputEventCount -= 1;
deliverInputEvent(q);
}
}
deliverInputEvent會調用到InputState的deliver方法
public final void deliver(QueuedInputEvent q) {
if ((q.mFlags & QueuedInputEvent.FLAG_FINISHED) != 0) {
forward(q);
} else if (shouldDropInputEvent(q)) {
finish(q, false);
} else {
apply(q, onProcess(q));
}
}
由於一開始我們的事件還沒有完成,因此不會帶上FLAG_FINISHED,而且我們的事件時一般事件,並不會被丟棄,因此會走apply分支。
首先會調用onProcess處理事件
protected int onProcess(QueuedInputEvent q) {
if (q.mEvent instanceof KeyEvent) {
return processKeyEvent(q);
} else {
// If delivering a new non-key event, make sure the window is
// now allowed to start updating.
handleDispatchDoneAnimating();
final int source = q.mEvent.getSource();
if ((source & InputDevice.SOURCE_CLASS_POINTER) != 0) {
return processPointerEvent(q);
} else if ((source & InputDevice.SOURCE_CLASS_TRACKBALL) != 0) {
return processTrackballEvent(q);
} else {
return processGenericMotionEvent(q);
}
}
}
以Key為例,我們會調用到processKeyEvent
private int processKeyEvent(QueuedInputEvent q) {
// Deliver the key to the view hierarchy.
if (mView.dispatchKeyEvent(event)) {
return FINISH_HANDLED;
}
}
然后調用了View類的dispatchKeyEvent方法,最終會調用到onKey這個回調函數
public boolean dispatchKeyEvent(KeyEvent event) {
// Give any attached key listener a first crack at the event.
//noinspection SimplifiableIfStatement
ListenerInfo li = mListenerInfo;
if (li != null && li.mOnKeyListener != null && (mViewFlags & ENABLED_MASK) == ENABLED
&& li.mOnKeyListener.onKey(this, event.getKeyCode(), event)) {
return true;
}
}
4. 處理結果反饋
然后還剩下apply這個方法需要分析。如果onProcess正常處理完成后,會返回FINISH_HANDLED,否則返回FINISHED_NOT_NHANDLED。
protected void apply(QueuedInputEvent q, int result) {
if (result == FORWARD) {
forward(q);
} else if (result == FINISH_HANDLED) {
finish(q, true);
} else if (result == FINISH_NOT_HANDLED) {
finish(q, false);
} else {
throw new IllegalArgumentException("Invalid result: " + result);
}
}
protected void finish(QueuedInputEvent q, boolean handled) {
q.mFlags |= QueuedInputEvent.FLAG_FINISHED;
if (handled) {
q.mFlags |= QueuedInputEvent.FLAG_FINISHED_HANDLED;
}
forward(q);
}
protected void forward(QueuedInputEvent q) {
onDeliverToNext(q);
}
protected void onDeliverToNext(QueuedInputEvent q) {
if (mNext != null) {
mNext.deliver(q);
} else {
finishInputEvent(q);
}
}
private void finishInputEvent(QueuedInputEvent q) {
if (q.mReceiver != null) {
boolean handled = (q.mFlags & QueuedInputEvent.FLAG_FINISHED_HANDLED) != 0;
q.mReceiver.finishInputEvent(q.mEvent, handled);
} else {
q.mEvent.recycleIfNeededAfterDispatch();
}
recycleQueuedInputEvent(q);
}
mReceiver.finishInputEvent就是NativeInputEvent的finishInputEvent
status_t NativeInputEventReceiver::finishInputEvent(uint32_t seq, bool handled) {
status_t status = mInputConsumer.sendFinishedSignal(seq, handled);
}
status_t InputConsumer::sendFinishedSignal(uint32_t seq, bool handled) {
while (!status && chainIndex-- > 0) {
status = sendUnchainedFinishedSignal(chainSeqs[chainIndex], handled);
}
}
status_t InputConsumer::sendUnchainedFinishedSignal(uint32_t seq, bool handled) {
InputMessage msg;
msg.header.type = InputMessage::TYPE_FINISHED;
msg.body.finished.seq = seq;
msg.body.finished.handled = handled;
return mChannel->sendMessage(&msg);
}
最后也是調用sendMessage把消息反饋給InputDispatcher。
到這里,上層的處理已經完成,接下來就是InputDispatcher的反饋處理。
InputDispatcher反饋處理
反饋處理在handleReceiveCallback中進行,其中包含兩個部分:
- 接收反饋消息
- 處理反饋消息
int InputDispatcher::handleReceiveCallback(int fd, int events, void* data) {
for (;;) {
uint32_t seq;
bool handled;
status = connection->inputPublisher.receiveFinishedSignal(&seq, &handled);
if (status) {
break;
}
d->finishDispatchCycleLocked(currentTime, connection, seq, handled);
gotOne = true;
}
}
1. 接收反饋消息
接收反饋消息是調用的inputPublisher的receiveFinishedSignal方法,內部還是調用了mChannel->receiveMessage
status_t InputPublisher::receiveFinishedSignal(uint32_t* outSeq, bool* outHandled) {
status_t result = mChannel->receiveMessage(&msg);
}
2. 處理反饋消息
處理反饋消息是調用了finishDispatchCycleLocked。
void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, uint32_t seq, bool handled) {
// Notify other system components and prepare to start the next dispatch cycle.
onDispatchCycleFinishedLocked(currentTime, connection, seq, handled);
}
void InputDispatcher::onDispatchCycleFinishedLocked(
nsecs_t currentTime, const sp<Connection>& connection, uint32_t seq, bool handled) {
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doDispatchCycleFinishedLockedInterruptible);
}
postCommandLocked其實也是發送消息給InputDispatcherThread,那么在分發線程下一次處理消息的時候會首先處理doDispatchCycleFinishedLockedInterruptible。
doDispatchCycleFinishedLockedInterruptible是實際上反饋進行處理的地方,其中包含了下面幾個處理步驟:
- 從waitQueue中取出所反饋的事件
- 事件是否處理超時,如果是則做超時處理
- 從waitQueue中刪除所反饋的事件
- 立刻展開下一次的outboundQueue事件監聽
void InputDispatcher::doDispatchCycleFinishedLockedInterruptible(
CommandEntry* commandEntry) {
// Handle post-event policy actions.
DispatchEntry* dispatchEntry = connection->findWaitQueueEntry(seq);
if (eventDuration > SLOW_EVENT_PROCESSING_WARNING_TIMEOUT) {
String8 msg;
msg.appendFormat("Window '%s' spent %0.1fms processing the last input event: ",
connection->getWindowName(), eventDuration * 0.000001f);
dispatchEntry->eventEntry->appendDescription(msg);
ALOGI("%s", msg.string());
}
if (dispatchEntry == connection->findWaitQueueEntry(seq)) {
connection->waitQueue.dequeue(dispatchEntry);
}
// Start the next dispatch cycle for this connection.
startDispatchCycleLocked(now(), connection);
}
}

