Android輸入系統是人與機器交互最主要的手段。我們通過按鍵或者觸碰屏幕,會先經由linux產生中斷,進行統一的處理過后,轉換成Android能識別的事件信息,然后Android的輸入系統去獲取事件,分發給上層用戶程序進行處理。
下面在細分一下輸入事件在Android系統中的流程:
從圖上能看到,輸入事件有四個處理的地方:
- InputReaderThread
- InputDispatcherThread
- WindowInputEventReceiver
- handleReceiverCallback
上面四個地方按功能來划分,其中:
- InputReaderThread負責從輸入設備中獲取事件,事件加入inboundQueue隊列。
- InputDispatcherThread負責把inboundQueue中的事件信息取出,並且從系統中獲取該事件所需要分發到的目標(窗口),把事件與目標分別整合成分發項,把分發項加入outboundQueue。另外,這里還是事件的分發端,負責把outboundQueue中的事件取出,通過InputChannel進行分發。分發完成后把該事件入waitQueue。
- WindowInputEventReceiver是事件的接收端。事件會在這里被onTouch這類回調函數處理
- handleReceiveCallback用於接收處理過后的反饋信息,事件在WindowInputEventReceiver端被處理成功或者失敗,將會通過InputChannel返回Handled或者UNHandled消息。handleReceiveCallback接收到消息后將會對waitQueue中的事件進行出隊列處理。
InputManager
InputManager用於啟動InputReaderThread與InputDispatcherThread,會在system_server初始化的時候被創建並且調用InputManager的start方法啟動這兩個線程。
InputManager的構造函數如下:
InputManager::InputManager(
const sp<EventHubInterface>& eventHub,
const sp<InputReaderPolicyInterface>& readerPolicy,
const sp<InputDispatcherPolicyInterface>& dispatcherPolicy) {
mDispatcher = new InputDispatcher(dispatcherPolicy);
mReader = new InputReader(eventHub, readerPolicy, mDispatcher);
initialize();
}
可以看到構造了InputDispatcher與InputReader兩個類,這兩個類是功能類,分別為InputDispatcherThread與InputReaderThread提供功能。另外,在構建InputReader的時候,把mDispatcher傳遞了進去,用於構建QueueInputListener。在這里可以提前說明一下這個成員的作用:把輸入事件添加到inboundQueue。
構造函數最后調用了initialize,構建InputReaderThread、InputDispatcherThread。
void InputManager::initialize() {
mReaderThread = new InputReaderThread(mReader);
mDispatcherThread = new InputDispatcherThread(mDispatcher);
}
InputManager的start用於啟動InputReaderThread與InputDispatcherThread這兩個線程。
status_t InputManager::start() {
status_t result = mDispatcherThread->run("InputDispatcher", PRIORITY_URGENT_DISPLAY);
if (result) {
ALOGE("Could not start InputDispatcher thread due to error %d.", result);
return result;
}
result = mReaderThread->run("InputReader", PRIORITY_URGENT_DISPLAY);
if (result) {
ALOGE("Could not start InputReader thread due to error %d.", result);
mDispatcherThread->requestExit();
return result;
}
return OK;
}

InputReaderThread
InputReaderThread是用來從輸入設備中讀取輸入事件的,首先看一下該線程的threadLoop函數
bool InputReaderThread::threadLoop() {
mReader->loopOnce();
return true;
}
mReader即在構建InputReaderThread時傳進來的InputReader,負責實現讀取輸入事件所需要的各種功能。InputReader::loopOnce用於讀取一次輸入事件。其中,讀取一次包含三個主要動作:
- 獲取輸入事件
- 處理輸入事件
- 輸入數據flush
void InputReader::loopOnce() {
size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE);
{ // acquire lock
processEventsLocked(mEventBuffer, count);
}
mQueuedListener->flush();
}
1. 獲取輸入事件getEvents
幾乎所有與輸入有關的事件都會從這里獲得。其中包含:
- EPOLL_ID_INORIFY.輸入設備打開或者刪除的事件
- EPOLL_ID_WAKE.管道發送過來的模擬事件
- EPOLL_IN.按鍵,觸摸這類實際操作事件
EPOLL_ID_INOTIFY,用於監控某個目錄(子目錄)下是否有新增或者刪除文件,在這里用於監視/dev/input,這個是輸入設備文件所在的目錄,如果有新增設備,則會在該目錄內創建新文件;如果刪除設備,則該目錄的相應文件會被刪除。
if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
if (eventItem.events & EPOLLIN) {
mPendingINotify = true;
} else {
ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
}
continue;
}
......
if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
mPendingINotify = false;
readNotifyLocked();
deviceChanged = true;
}
status_t EventHub::readNotifyLocked() {
if(event->mask & IN_CREATE) {
openDeviceLocked(devname);
} else {
ALOGI("Removing device '%s' due to inotify event\n", devname);
closeDeviceByPathLocked(devname);
}
}
EPOLL_ID_WAKE,EventHub有維護一個pipe,當pipe的寫入端按照適當格式寫入時間后,getEvents可以通過pipe的讀取端獲取這個虛擬事件
if (eventItem.data.u32 == EPOLL_ID_WAKE) {
if (eventItem.events & EPOLLIN) {
ALOGV("awoken after wake()");
awoken = true;
char buffer[16];
ssize_t nRead;
do {
nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
} while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
} else {
ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
eventItem.events);
}
continue;
}
EPOLL_IN,用於監控設備文件的輸入狀態,當我們按鍵或者觸摸設備時,我們就能獲得EPOLL_IN狀態,從而到該設備讀取輸入事件
if (eventItem.events & EPOLLIN) {
int32_t readSize = read(device->fd, readBuffer,
sizeof(struct input_event) * capacity);
event->when = now;
event->deviceId = deviceId;
event->type = iev.type;
event->code = iev.code;
event->value = iev.value;
event += 1;
capacity -= 1;
}
監聽事件用的是epoll_wait,由於epoll_wait一次能獲取的事件可能會有多個,所以一次的getEvents需要對所獲得的每個事件都進行上述代碼的打包操作,最后返回事件數組。
int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);

2. 處理輸入事件processEventsLocked
由getEvents獲得的事件數組會在這個函數內進行處理,其中事件數組中的事件大致可以分為兩類,在這個函數將他們分開處理
- 按鍵、觸摸事件
- 設備增加、刪除事件
void InputReader::processEventsLocked(const RawEvent* rawEvents, size_t count) {
for (const RawEvent* rawEvent = rawEvents; count;) {
int32_t type = rawEvent->type;
size_t batchSize = 1;
if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) {
int32_t deviceId = rawEvent->deviceId;
while (batchSize < count) {
if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT
|| rawEvent[batchSize].deviceId != deviceId) {
break;
}
batchSize += 1;
}
#if DEBUG_RAW_EVENTS
ALOGD("BatchSize: %d Count: %d", batchSize, count);
#endif
processEventsForDeviceLocked(deviceId, rawEvent, batchSize);
} else {
switch (rawEvent->type) {
case EventHubInterface::DEVICE_ADDED:
addDeviceLocked(rawEvent->when, rawEvent->deviceId);
break;
case EventHubInterface::DEVICE_REMOVED:
removeDeviceLocked(rawEvent->when, rawEvent->deviceId);
break;
case EventHubInterface::FINISHED_DEVICE_SCAN:
handleConfigurationChangedLocked(rawEvent->when);
break;
default:
ALOG_ASSERT(false); // can't happen
break;
}
}
count -= batchSize;
rawEvent += batchSize;
}
}
在處理按鍵、觸摸事件時,會根據他們設備的類型調用不同的process函數進行處理。對於觸摸事件,基本上只是進行賦值,而按鍵事件則需要通過映射,把從設備文件讀取進來的值轉換成Android上層能統一處理的按鍵事件。
void InputReader::processEventsForDeviceLocked(int32_t deviceId,
const RawEvent* rawEvents, size_t count) {
InputDevice* device = mDevices.valueAt(deviceIndex);
device->process(rawEvents, count);
}
void KeyboardInputMapper::process(const RawEvent* rawEvent) {
switch (rawEvent->type) {
case EV_KEY: {
if (getEventHub()->mapKey(getDeviceId(), scanCode, usageCode, &keyCode, &flags)) {
keyCode = AKEYCODE_UNKNOWN;
flags = 0;
}
processKey(rawEvent->when, rawEvent->value != 0, keyCode, scanCode, flags);
}
break;
}
}
上面的mapKey對按鍵進行了映射處理,processKey用於區分按鍵的按下或者松開。在processKey的最后,會把事件打包成NotifyKeyArgs,然后通過QueueInputListener把事件push進mArgQueue。由於這里是一個事件數組,所以mArgQueue是必須的。
void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode,
int32_t scanCode, uint32_t policyFlags) {
if (down) {
...
} else {
...
}
NotifyKeyArgs args(when, getDeviceId(), mSource, policyFlags,
down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP,
AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime);
getListener()->notifyKey(&args);
}
void QueuedInputListener::notifyKey(const NotifyKeyArgs* args) {
mArgsQueue.push(new NotifyKeyArgs(*args));
}

3. 輸入數據flush
在事件數組都push進mArgQueue之后,就需要把mArgQueue隊列給推送出去進行下一步的操作,mQueuedListener->flush();就是負責進行隊列的推送。還記得我們最開始說的”在構建InputReader的時候,把mDispatcher傳遞了進去,用於構建QueueInputListener”,我們這里的flush最終就是調用了InputDispatcher的notifyKey
void QueuedInputListener::flush() {
size_t count = mArgsQueue.size();
for (size_t i = 0; i < count; i++) {
NotifyArgs* args = mArgsQueue[i];
args->notify(mInnerListener);
delete args;
}
mArgsQueue.clear();
}
void NotifyKeyArgs::notify(const sp<InputListenerInterface>& listener) const {
listener->notifyKey(this);
}

以notifyKey為例,其目的實際上是把事件隊列加入mInboundQueue,但是在入mInboundQueue隊列之前,調用了interceptKeyBeforeQueueing,該函數通過jni,調用到PhoneWindowManager的interceptKeyBeforeQueueing。而在入了mInboundQueue隊列后,就會調用wake函數去喚醒InputDispatcherThread。下一步就是InputDispatcherThread的工作了。
void InputDispatcher::notifyKey(const NotifyKeyArgs* args) {
mPolicy->interceptKeyBeforeQueueing(&event, /*byref*/ policyFlags);
needWake = enqueueInboundEventLocked(newEntry);
if (needWake) {
mLooper->wake();
}
}
InputDispatcherThread
InputDispatcherThread是用來進行事件分發的線程。內部也是調用InputDispatcher來實現所需要的功能。
bool InputDispatcherThread::threadLoop() {
mDispatcher->dispatchOnce();
return true;
}
每次分發,調用的都是dispatchOnce,其內部調用dispatchOnceInnerLocked進行分發后,線程會調用pollOnce進入睡眠,等待下次InputReaderThread的wake操作
void InputDispatcher::dispatchOnce() {
dispatchOnceInnerLocked(&nextWakeupTime);
mLooper->pollOnce(timeoutMillis);
}
分發的過程可以大概分成以下幾個步驟:
- 從mInboundQueue的隊列頭取出事件
- 特殊事件的處理,如POLICY_FLAG_PASS_TO_USER這類事件能直接發送到用戶,類似於電量不足的這類事件:當電量低於20%時,直接往上層發送事件,而不用知道當前是在哪個Activity
- 一般事件的處理,進行分發
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t* nextWakeupTime) {
mPendingEvent = mInboundQueue.dequeueAtHead();
// Poke user activity for this event.
if (mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) {
pokeUserActivityLocked(mPendingEvent);
}
switch (mPendingEvent->type) {
case EventEntry::TYPE_KEY: {
done = dispatchKeyLocked(currentTime, typedEntry, &dropReason, nextWakeupTime);
break;
}
}
}
分發事件,肯定需要知道事件要分發到哪里,即分發的目標窗口,不過目標窗口可能不止一個。
bool InputDispatcher::dispatchKeyLocked(nsecs_t currentTime, KeyEntry* entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
int32_t injectionResult = findFocusedWindowTargetsLocked(currentTime,
entry, inputTargets, nextWakeupTime);
// Dispatch the key.
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
由於可能存在多個目標窗口,所以需要對每個目標窗口都進行事件分發
void InputDispatcher::dispatchEventLocked(nsecs_t currentTime,
EventEntry* eventEntry, const Vector<InputTarget>& inputTargets) {
for (size_t i = 0; i < inputTargets.size(); i++) {
prepareDispatchCycleLocked(currentTime, connection, eventEntry, &inputTarget);
}
}
在分發前的准備,就是把事件入outboundQueue隊列,不過請注意,這里的隊列不同於inboundQueue,因為outboundQueue是窗口相關的,窗口跟InputDispatcherThread間建立起一個連接(connection),該outboundQueue就是connection的成員。
void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget) {
// Not splitting. Enqueue dispatch entries for the event as is.
enqueueDispatchEntriesLocked(currentTime, connection, eventEntry, inputTarget);
}
void InputDispatcher::enqueueDispatchEntriesLocked(nsecs_t currentTime,
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget) {
bool wasEmpty = connection->outboundQueue.isEmpty();
// Enqueue dispatch entries for the requested modes.
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_OUTSIDE);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_IS);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER);
// If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty && !connection->outboundQueue.isEmpty()) {
startDispatchCycleLocked(currentTime, connection);
}
}
void InputDispatcher::enqueueDispatchEntryLocked(
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget,
int32_t dispatchMode) {
// Enqueue the dispatch entry.
connection->outboundQueue.enqueueAtTail(dispatchEntry);
}
在准備完成后就會調用startDispatchCycleLocked進行事件分發,startDispatchCycleLocked這個函數的主體是一個while循環,在循環體內會執行下面三個主要步驟:
- 調用connection的inputPublisher來發出事件
- 把事件從outboundQueue隊列中移除
- 把事件加入waitQueue隊列,當事件在處理完成后返回,就會從waitQueue中刪除該事件
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
while (connection->status == Connection::STATUS_NORMAL
&& !connection->outboundQueue.isEmpty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.head;
switch (eventEntry->type) {
case EventEntry::TYPE_KEY: {
KeyEntry* keyEntry = static_cast<KeyEntry*>(eventEntry);
// Publish the key event.
status = connection->inputPublisher.publishKeyEvent(dispatchEntry->seq,
keyEntry->deviceId, keyEntry->source,
dispatchEntry->resolvedAction, dispatchEntry->resolvedFlags,
keyEntry->keyCode, keyEntry->scanCode,
keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime,
keyEntry->eventTime);
}
}
// Re-enqueue the event on the wait queue.
connection->outboundQueue.dequeue(dispatchEntry);
traceOutboundQueueLengthLocked(connection);
connection->waitQueue.enqueueAtTail(dispatchEntry);
traceWaitQueueLengthLocked(connection);
}
}
我們來看一下inputPublisher的publishKeyEvent的實現,最后也是調用socket的send接口來實現。
status_t InputPublisher::publishKeyEvent(
uint32_t seq,
int32_t deviceId,
int32_t source,
int32_t action,
int32_t flags,
int32_t keyCode,
int32_t scanCode,
int32_t metaState,
int32_t repeatCount,
nsecs_t downTime,
nsecs_t eventTime) {
InputMessage msg;
msg.header.type = InputMessage::TYPE_KEY;
msg.body.key.seq = seq;
msg.body.key.deviceId = deviceId;
msg.body.key.source = source;
msg.body.key.action = action;
msg.body.key.flags = flags;
msg.body.key.keyCode = keyCode;
msg.body.key.scanCode = scanCode;
msg.body.key.metaState = metaState;
msg.body.key.repeatCount = repeatCount;
msg.body.key.downTime = downTime;
msg.body.key.eventTime = eventTime;
return mChannel->sendMessage(&msg);
}
status_t InputChannel::sendMessage(const InputMessage* msg) {
do {
nWrite = ::send(mFd, msg, msgLength, MSG_DONTWAIT | MSG_NOSIGNAL);
} while (nWrite == -1 && errno == EINTR);
}

總體的流程如下


