題目:
給定如下圖所示的無向連通圖,假定圖中所有邊的權值都為1;
顯然,從源點A到終點T的最短路徑有多條,求不同的最短路徑的數目。
注:兩條路徑中有任意結點不同或者結點順序不同,都稱為不同的路徑。

思路:
給定的圖中,邊權相等且非負,Dijkstra最短路徑算法退化為BFS廣度優先搜索。實現過程中可以使用隊列。
計算到某結點最短路徑條數,只需計算與該結點相鄰的結點的最短路徑值和最短路徑條數,把最短路徑值最小且相等的最短路徑條數加起來即可。
答案:12
代碼:
#include <iostream>
#include <queue>
#include <string.h>
using namespace std;
const int N=16;
int calNumOfPath(int G[N][N]){
int stepNum[N]; // how many steps to reach i
int pathNum[N]; // how many paths can reach i
bool visited[N];
memset(stepNum,0,N*sizeof(int));
memset(pathNum,0,N*sizeof(int));
memset(visited,false,N*sizeof(bool));
stepNum[0]=0;
pathNum[0]=1;
queue<int> q;
q.push(0);
while(!q.empty()){
int node=q.front();
q.pop();
visited[node]=true;
int s=stepNum[node]+1;
for(int i=0;i<N;i++){
if(i!=node && !visited[i] && G[node][i]==1){
if(stepNum[i]==0 || pathNum[i]>s){
stepNum[i]=s;
pathNum[i]=pathNum[node];
q.push(i);
}
else if(stepNum[i]==s){
pathNum[i]=pathNum[i]+pathNum[node];
}
}
}
}
return pathNum[N-1];
}
int main()
{
int G[16][16]={
{0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0},
{1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0},
{0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0},
{0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0},
{1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0},
{0,1,0,0,1,0,1,0,0,1,0,0,0,0,0,0},
{0,0,1,0,0,1,0,1,0,0,1,0,0,0,0,0},
{0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0},
{0,0,0,0,0,1,0,0,1,0,1,0,0,1,0,0},
{0,0,0,0,0,0,1,0,0,1,0,1,0,0,1,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0},
{0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0},
{0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1},
{0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0}};
cout << calNumOfPath(G) << endl;
return 0;
}
