題目:
給定如下圖所示的無向連通圖,假定圖中所有邊的權值都為1;
顯然,從源點A到終點T的最短路徑有多條,求不同的最短路徑的數目。
注:兩條路徑中有任意結點不同或者結點順序不同,都稱為不同的路徑。
思路:
給定的圖中,邊權相等且非負,Dijkstra最短路徑算法退化為BFS廣度優先搜索。實現過程中可以使用隊列。
計算到某結點最短路徑條數,只需計算與該結點相鄰的結點的最短路徑值和最短路徑條數,把最短路徑值最小且相等的最短路徑條數加起來即可。
答案:12
代碼:
#include <iostream> #include <queue> #include <string.h> using namespace std; const int N=16; int calNumOfPath(int G[N][N]){ int stepNum[N]; // how many steps to reach i int pathNum[N]; // how many paths can reach i bool visited[N]; memset(stepNum,0,N*sizeof(int)); memset(pathNum,0,N*sizeof(int)); memset(visited,false,N*sizeof(bool)); stepNum[0]=0; pathNum[0]=1; queue<int> q; q.push(0); while(!q.empty()){ int node=q.front(); q.pop(); visited[node]=true; int s=stepNum[node]+1; for(int i=0;i<N;i++){ if(i!=node && !visited[i] && G[node][i]==1){ if(stepNum[i]==0 || pathNum[i]>s){ stepNum[i]=s; pathNum[i]=pathNum[node]; q.push(i); } else if(stepNum[i]==s){ pathNum[i]=pathNum[i]+pathNum[node]; } } } } return pathNum[N-1]; } int main() { int G[16][16]={ {0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0}, {1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0}, {0,1,0,1,0,0,1,0,0,0,0,0,0,0,0,0}, {0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0}, {1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0}, {0,1,0,0,1,0,1,0,0,1,0,0,0,0,0,0}, {0,0,1,0,0,1,0,1,0,0,1,0,0,0,0,0}, {0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0}, {0,0,0,0,0,1,0,0,1,0,1,0,0,1,0,0}, {0,0,0,0,0,0,1,0,0,1,0,1,0,0,1,0}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}, {0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0}, {0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0}, {0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1}, {0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0}}; cout << calNumOfPath(G) << endl; return 0; }