實驗十八:SDRAM模塊① — 單字讀寫
筆者與SDRAM有段不短的孽緣,它作為冤魂日夜不斷糾纏筆者。筆者嘗試過許多方法將其退散,不過屢試屢敗的筆者,最終心情像橘子一樣橙。《整合篇》之際,筆者曾經大戰幾回兒,不過內容都是點到即止。最近它破蠱而出,日夜不停:“好~痛苦!好~痛苦!”地呻吟着,嚇得筆者不敢半夜如廁。瘋狂之下,誓要歪它不可 ... 可惡的東西,筆者要它血債血還!
圖18.1 數據讀取(理想時序左,物理時序右)。
首先,讓我們來了解一下,什么才是數據讀取的最佳狀態?如圖18.1所示,紅色箭頭是上升沿,綠色箭頭是鎖存沿。左圖是理想時序讀取數據的最佳狀態,即T0發送數據,T1鎖存數據。右圖則是物理時序讀取數據的最佳狀態,即T0發送數據,然后數據經由 TDATA延遲,然后T1鎖存數據。理想狀態下,讀取數據不用考慮任何物理因數,凡是過去值都會讀取成功。
圖18.2 讀取數據(物理時序)。
然而物理狀態下,讀取數據則必須考慮物理因數,但是物理時序也有所謂的理想狀態,即數據被TDATA推擠,然后恰好停留在鎖存沿的正中間。該狀態之所以稱為理想,那是因為建立時間TSETUP與保持時間THOLD都被滿足。
如圖18.2所示,TSETUP從數據中間向左邊覆蓋,THOLD從數據中間向右邊覆蓋,如果兩者不完全覆蓋數據,那么數據的有效性就能得到保證。簡言之,數據是否讀取成功,建立時間還有保持時間都必須得到滿足。但是我們也知道,Verilog不能描述理想以外的東西,即Verilog無力描述TDATA。話雖如此,我們可以改變時鍾位移來達到同樣的效果。
圖18.3 CLOCK1位移 -180°(左圖),沒有位移(中圖),CLOCK2 位移 +180°(右圖),以及修正結果。
常見的理想時序,最多適用在FPGA的內部而已。當描述功活動涉及FPGA的外部,那么理想時序必須考慮對外的情況。如圖18.3所示,中間的理想時序圖可以經由 CLOCK1 位移 -180°,又或者 CLOCK2 位移 +180° 來得到同樣的效果。雖說180° 的位移是理想效果,但是我們還要考慮物理路徑所帶來的影響。根據Alinix 301這只開發板,我們必須追加 -30° 位移才能達到修正的效果。(注意:追加-30° 的修正時序僅僅為適用Alinix 301這只板子而已)。理解完畢以后,我們便可進入正題。
驅動SDRAM而言,簡單可以分為以下四項操作:
(一)初始化
(二)刷新操作
(三)讀操作
(四)寫操作
初始化令SDRAM就緒,刷新操作就是不失掉內容(數據),讀操作就是從SDRAM哪里讀取數據,寫操作就是向SDRAM寫數據。其中,讀寫操作又有單字讀寫,多字讀寫還有頁讀寫。
首先,讓我們來分析一下Alinx 開發板上HY57V2562GTR 這只SDRAM。根據手冊,這只SDRAM有256Mb的容量,4個BANK(即一個BANK為64Mb),頻率極限為200Mhz,數據保留周期為 8192 / 64ms。至於引腳定義如表18.1所示:
表18.1 SDRAM的引腳定義
分類 |
標示 |
信號 |
說明 |
時鍾信號 |
CLK |
S_CLK |
時鍾源 |
地址信號 |
BA0~1 |
S_BA[1:0] |
BANK地址 |
A0~A12 |
S_A[12:0] |
讀寫地址,行列共用,A0~A12為行地址,CA0~CA8為列地址 |
|
命令信號 |
CKE |
S_CKE, |
時鍾選,拉高有效 |
CS |
S_NCS, |
片選,拉低有效 |
|
RAS |
S_NRAS, |
命令選,拉低有效 |
|
CAS |
S_NCAS, |
命令選,拉低有效 |
|
WE |
S_NWE |
命令選,拉低有效 |
|
數據信號 |
DQ0~DQ15 |
S_DQ[15:0] |
讀寫數據的IO |
LDQM,UDQM |
S_DQM[1:0] |
遮蓋數據,一般拉低無視 |
如表18.1所示,CLK為SDRAM的時鍾源。CKE,CS,RAS,CAS還有WE皆為命令信號,五者相互組合形成以下幾個常用命令,結果如表18.2所示:
表18.2 常用命令。
命令 |
CKE |
CS |
RAS |
CAS |
WE |
說明 |
NOP |
1 |
0 |
1 |
1 |
1 |
空命令 |
ACT |
1 |
0 |
0 |
1 |
1 |
激活命令,選擇Bank地址與行地址 |
WR |
1 |
0 |
1 |
0 |
0 |
寫命令,開始寫數據 |
RD |
1 |
0 |
1 |
0 |
1 |
讀命令,開始讀數據 |
BSTP |
1 |
0 |
1 |
1 |
0 |
停止命令,停止讀寫 |
PR |
1 |
0 |
0 |
1 |
0 |
預充命令,釋放選擇 |
AR |
1 |
0 |
0 |
0 |
1 |
刷新命令,刷新內容 |
LMR |
1 |
0 |
0 |
0 |
0 |
設置命令,設置SDRAM |
l NOP為No Operation,即空命令,除了給空時間以外沒有任何意義。
l ACT為Active,即激活命令,用來選擇某Bank某行。
l WR為Write,即寫命令,通知設備開始寫數據。
l RD為Read,即讀命令,通知設備開始讀數據。
l BSTP為Burst Stop,即停止命令,禁止設備繼續讀寫。
l PR為 Precharge,即預充命令,用來釋放某Bank與某行的選擇。
l AR為Auto Refresh,即刷新命令,用來刷新或者更新數據內容。
l LMR為Load Mode Register,即設置命令,用來配置設備參數。
Verilog則可以這樣描述這些命令,結果如代碼18.1所示:
parameter _INIT = 5'b01111, _NOP = 5'b10111, _ACT = 5'b10011, _RD = 5'b10101, _WR = 5'b10100,
_BSTP = 5'b10110, _PR = 5'b10010, _AR = 5'b10001, _LMR = 5'b10000;
代碼18.1
DQ0~DQ15為數據信號。BA0~1與A0~A12皆為地址信號,其中A0~A12行列共用,,然而地址信號可以指向的范圍,如下計算:
2(2 Bank + 13 Row + 9 Column) × 16 bit = 224 × 16 bit
= 1.6777216e7 × 16 bit // 16M × 16 bit
= 2.68435456e8 bit
= 262144 kbit
= 256 Mbits
初始化:
初始化除了就緒SDRAM以外,我們還要設置SDRAM內部的 Mode Register,設置內容內容如表18.3所示:
表18.3 Mode Register的內容。
Mode Register |
||||||||||||
A12 |
A11 |
A10 |
A9 |
A8 |
A7 |
A6 |
A5 |
A4 |
A3 |
A2 |
A1 |
A0 |
0 |
0 |
OP Code |
0 |
0 |
CAS Latency |
BT |
Burst Length |
|
|
||||||||||||||||||||||||||||||||||||||
|
|
如表18.3所示,設置內容必須經由地址信號A12~A0。其中A2~A0表示字讀寫的長度,實驗十八為單字讀寫,所以A2~A0設置為3’b000。A3表示讀寫次序,1’b0表示順序讀寫。A6~A4表示 CAS 延遲(也可以視為讀出延遲),設為 3’b011是為讀出更穩定。A9表示讀寫模式,一般都是設置為1’b0。
圖18.4 初始化的理想時序圖。
圖18.4是初始化的理想時序圖,其中CLOCK1為 -210°的系統時鍾,CLOCK2為SDRAM的時鍾。rCMD為CKE,CS,RAS,CAS還有WE等命令。rA為A0~A12,rBA為BA0~BA1等地址信號。初始化過程如下所示:
l T0,滿足100us;
l T1,發送PR命令,拉高所有rA與rBA。
l T1半周期,SDRAM讀取。
l T2,滿足TRP;
l T3,發送AR命令。
l T3半周期,SDRAM讀取。
l T4,滿足TRRC,
l T5,發送AR命令。
l T5半周期,SDRAM讀取。
l T6,滿足TRRC,
l T7,發送LMR命令與相關Code(設置內容)。
l T7半周期,SDRAM讀取。
l T8,滿足TMRD。
怎么樣?讀者是不是覺得很單純呢?事后,Verilog則可以這樣描述,結果如代碼18.2所示:
1. case( i )
2.
3. 0: // delay 100us
4. if( C1 == T100US -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
5. else begin C1 <= C1 + 1'b1; end
6.
7. 1: // Send Precharge Command
8. begin rCMD <= _PR; { rBA, rA } <= 15'h3fff; i <= i + 1'b1; end
9.
10. 2: // wait TRP 20ns
11. if( C1 == TRP -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
12. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
13.
14. 3: // Send Auto Refresh Command
15. begin rCMD <= _AR; i <= i + 1'b1; end
16.
17. 4: // wait TRRC 63ns
18. if( C1 == TRRC -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
19. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
20.
21. 5: // Send Auto Refresh Command
22. begin rCMD <= _AR; i <= i + 1'b1; end
23.
24. 6: // wait TRRC 63ns
25. if( C1 == TRRC -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
26. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
27.
28. 7: // Send LMR Cmd. Burst Read & Write, 3'b011 mean CAS latecy = 3, Sequential, 1 burst length
29. begin rCMD <= _LMR; rBA <= 2'b11; rA <= {3'd0,1'b0,2'd0,3'b011,1'b0, 3'b000}; i <= i + 1'b1; end
30.
31. 8: // Send 2 nop CLK for tMRD
32. if( C1 == TMRD -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
33. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
34.
35. 9: // Generate done signal
36. begin isDone <= 1'b1; i <= i + 1'b1; end
37.
38. 10:
39. begin isDone <= 1'b0; i <= 4'd0; end
40.
41. endcase
代碼18.2
代碼18.2完全按照圖18.4去驅動,讀者只要將i看為T就萬事大吉,其中步驟7發送LMR命令還有設置Code內容。至於步驟8~9則用來產生完成信號。
刷新操作:
圖18.5 刷新操作的理想時序圖。
所謂定期刷新就是被宮掉的初始化,如圖18.5所示,時序過程如下:
l T0,發送PR命令(拉高所有rA與rBA視喜好而定);
l T0半周期,SDRAM讀取。
l T1,滿足TRP;
l T2,發送AR命令。
l T2半周期,SDRAM讀取。
l T3,滿足TRRC,
l T4,發送AR命令。
l T4半周期,SDRAM讀取。
l T5,滿足TRRC,
Verilog 則可以這樣表示,結果如表18.3所示:
1. case( i )
2.
3. 0: // Send Precharge Command
4. begin rCMD <= _PR; i <= i + 1'b1; end
5.
6. 1: // wait TRP 20ns
7. if( C1 == TRP -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
8. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
9.
10. 2: // Send Auto Refresh Command
11. begin rCMD <= _AR; i <= i + 1'b1; end
12.
13. 3: // wait TRRC 63ns
14. if( C1 == TRRC -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
15. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
16.
17. 4: // Send Auto Refresh Command
18. begin rCMD <= _AR; i <= i + 1'b1; end
19.
20. 5: // wait TRRC 63ns
21. if( C1 == TRRC -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
22. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
23.
24. 6: // Generate done signal
25. begin isDone <= 1'b1; i <= i + 1'b1; end
26.
27. 7:
28. begin isDone <= 1'b0; i <= 4'd0; end
29.
30. endcase
代碼18.3
除了步驟6~7用來產生完成信號以外,代碼18.3都是據圖18.5描述。SDRAM儲存的內容是非常脆弱的,如果我們不定期刷新內容,該內容有可能會蒸發掉。根據 HY57V2562GTR這只 SDRAM,它的內容儲存周期為 8192 / 64ms,然而定期刷新的計算如下:
64ms / 8192 = 7.8125us
換言之,每隔7.8125微妙就要刷新一次所有內容。
寫操作:
圖18.6 寫操作的理想時序圖。
圖18.6是寫操作的理想時序圖,過程如下:
l T1,發送ACT命令,BANK地址與行地址;
l T1半周期,SDRAM讀取;
l T2,滿足TRCD;
l T3,發送WR命令,BANK地址與列地址,還有寫數據;
l T3半周期,SDRAM讀取
l T4,滿足TWR;
l T5,滿足TRP。
正如前面說過,ACT命令式用來選擇BANK地址與行地址,然而關鍵就在T3。T3除了發送WR命令,列地址,還有些數據以外,A10拉高是為了執行預充電。所謂預充電就是釋放BANK地址,行地址與列地址等的選擇。因此,滿足TWR以后,我們還要滿足TRP的釋放時間,好讓SDRAM有足夠的時間自行釋放選擇。
Verilog則可以這樣描述,結果如代碼18.4所示:
1. case( i )
2.
3. 0: // Set IO to output State
4. begin isOut <= 1'b1; i <= i + 1'b1; end
5.
6. 1: // Send Active Command with Bank and Row address
7. begin rCMD <= _ACT; rBA <= iAddr[23:22]; rA <= iAddr[21:9]; i <= i + 1'b1; end
8.
9. 2: // wait TRCD 20ns
10. if( C1 == TRCD -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
11. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
12.
13. 3: // Send Write cmd with row address, pull up A10 1 clk to PR
14. begin rCMD <= _WR; rBA <= iAddr[23:22]; rA <= { 4'b0010, iAddr[8:0] }; i <= i + 1'b1; end
15.
16. 4: // wait TWR 2 clock
17. if( C1 == TWR -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
18. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
19.
20. 5: // wait TRP 20ns
21. if( C1 == TRP -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
22. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
23.
24. 6: // Generate done signal
25. begin isDone <= 1'b1; i <= i + 1'b1; end
26.
27. 7:
28. begin isDone <= 1'b0; i <= 4'd0; end
29.
30. endcase
代碼18.4
根據前面的計算,BA1~BA0再加上 RA12~A0與 CA8~A0以后,一共有24位寬,詳細的位分配如表18.4所示:
表18.4 Addr的位分配。
位分配 |
地址內容 |
Addr[23:22] |
BANK地址 |
Addr[21:9] |
行地址 |
Addr[8:0] |
列地址 |
如代碼18.4所示,步驟用來設置IO口為輸出。步驟1為rA賦值行地址,步驟3則為rA賦值列地址,並且拉高A10以示自行預充電。步驟6~7用來產生完成信號。
讀操作:
圖18.7 讀操作的理想時序。
圖18.7為讀操作的理想時序,大致過程如下:
l T1,發送ACT命令,BANK地址與行地址;
l T1半周期,SDRAM讀取;
l T2,滿足TRCD;
l T3,發送RD命令,BANK地址與列地址;
l T3半周期,SDRAM讀取命令。
l T4,滿足 CAS Latency。
l T5,讀取數據。
l T6,滿足TRP。
讀操作與寫操作的過程大同小異,除了WR命令變成RD命令以外,A10為1同樣表示自行預充電,余下就是滿足CAS Latency。好奇的同學一定會覺得疑惑,為何CL 為3呢?其實沒什么,只是直感上覺得3這個數字比較順眼一點。注意CL的計算方式是讀取RD命令以后開始計算。
Verilog可以這樣描述,結果如代碼18.5所示:
1. case( i )
2.
3. 0:
4. begin isOut <= 1'b0; D1 <= 16'd0; i <= i + 1'b1; end
5.
6. 1: // Send Active command with Bank and Row address
7. begin rCMD <= _ACT; rBA <= iAddr[23:22]; rA <= iAddr[21:9]; i <= i + 1'b1; end
8.
9. 2: // wait TRCD 20ns
10. if( C1 == TRCD -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
11. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
12.
13. 3: // Send Read command and column address, pull up A10 to PR.
14. begin rCMD <= _RD; rBA <= iAddr[23:22]; rA <= { 4'b0010, iAddr[8:0]}; i <= i + 1'b1; end
15.
16. 4: // wait CL 3 clock
17. if( C1 == CL -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
18. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
19.
20. 5: // Read Data
21. begin D1 <= S_DQ; i <= i + 1'b1; end
22.
23. 6: // wait TRP 20ns
24. if( C1 == TRP -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
25. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
26.
27. 7: // Generate done signal
28. begin isDone <= 1'b1; i <= i + 1'b1; end
29.
30. 8:
31. begin isDone <= 1'b0; i <= 4'd0; end
32.
33. endcase
代碼18.5
代碼18.5完全根據圖18.7描述,除了步驟7~8用於產生完成信號以外。SDRAM的基本操作大致上就是這樣而已,完后我們便可以開始建模了。
圖18.8 SDRAM基礎模塊的建模圖。
圖18.8是SDRAM基礎模塊的建模圖,SDRAM基礎模塊的內容包括SDRAM控制模塊,還有SDRAM功能模塊。外圍的PLL模塊應用頻率為133Mhz向左位移210°的CLOCK1,還有133Mhz的CLOCK2。CLOCK1用作系統時鍾,CLOCK用作SDRAM時鍾。如果PLL模塊硬要分類的話,它應該屬於特殊性質的即時類吧!?
SDRAM控制模塊主要負責一些操作的調度,左邊2位Call/Done由外部調用,其中 [1]為寫操作 [0]為讀操作;右邊4位Call/Done為調用SDRAM功能模塊,其中 [3]為寫操作 [2]為讀操作 [1]為刷新 [0]為初始化。SDRAM功能模塊的右邊是驅動SDRAM硬件資源的頂層信號,左邊的問答信號被控制模塊調用以外,地址信號還有數據信號都直接連接外部。
sdram_funcmod.v
圖18.9 SDRAM功能模塊的建模圖。
該說的東西筆者都已經說了,具體內容我們還是來看代碼吧。
1. module sdram_funcmod
2. (
3. input CLOCK,
4. input RESET,
5.
6. output S_CKE, S_NCS, S_NRAS, S_NCAS, S_NWE,
7. output [1:0]S_BA,
8. output [12:0]S_A,
9. output [1:0]S_DQM,
10. inout [15:0]S_DQ,
11.
12. input [3:0]iCall,
13. output oDone,
14. input [23:0]iAddr, // [23:22]BA,[21:9]Row,[8:0]Column
15. input [15:0]iData,
16. output [15:0]oData
17. );
以上內容為相關的出入端聲明。
18. parameter T100US = 14'd13300;
19. // tRP 20ns, tRRC 63ns, tRCD 20ns, tMRD 2CLK, tWR/tDPL 2CLK, CAS Latency 3CLK
20. parameter TRP = 14'd3, TRRC = 14'd9, TMRD = 14'd2, TRCD = 14'd3, TWR = 14'd2, CL = 14'd3;
21. parameter _INIT = 5'b01111, _NOP = 5'b10111, _ACT = 5'b10011, _RD = 5'b10101, _WR = 5'b10100,
22. _BSTP = 5'b10110, _PR = 5'b10010, _AR = 5'b10001, _LMR = 5'b10000;
23.
以上內容為相關的常量聲明,其中第18~20行的是將常量都是經由133Mhz量化。
24. reg [4:0]i;
25. reg [13:0]C1;
26. reg [15:0]D1;
27. reg [4:0]rCMD;
28. reg [1:0]rBA;
29. reg [12:0]rA;
30. reg [1:0]rDQM;
31. reg isOut;
32. reg isDone;
33.
34. always @ ( posedge CLOCK or negedge RESET )
35. if( !RESET )
36. begin
37. i <= 4'd0;
38. C1 <= 14'd0;
39. D1 <= 16'd0;
40. rCMD <= _NOP;
41. rBA <= 2'b11;
42. rA <= 13'h1fff;
43. rDQM <= 2'b00;
44. isOut <= 1'b1;
45. isDone <= 1'b0;
46. end
以上內容為相關的寄存器聲明以及復位操作。
47. else if( iCall[3] )
48. case( i )
49.
50. 0: // Set IO to output State
51. begin isOut <= 1'b1; i <= i + 1'b1; end
52.
53. 1: // Send Active Command with Bank and Row address
54. begin rCMD <= _ACT; rBA <= iAddr[23:22]; rA <= iAddr[21:9]; i <= i + 1'b1; end
55.
56. 2: // wait TRCD 20ns
57. if( C1 == TRCD -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
58. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
59.
60. /*********************************************/
61.
62. 3: // Send Write command with row address, pull up A10 1 clk to PR
63. begin rCMD <= _WR; rBA <= iAddr[23:22]; rA <= { 4'b0010, iAddr[8:0] }; i <= i + 1'b1; end
64.
65. 4: // wait TWR 2 clock
66. if( C1 == TWR -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
67. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
68.
69. 5: // wait TRP 20ns
70. if( C1 == TRP -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
71. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
72.
73. /**********************************************/
74.
75. 6: // Generate done signal
76. begin isDone <= 1'b1; i <= i + 1'b1; end
77.
78. 7:
79. begin isDone <= 1'b0; i <= 4'd0; end
80.
81. endcase
以上內容為部分核心操作。第47行的if( iCall[3] ) 表示余下內容為寫操作。
82. else if( iCall[2] )
83. case( i )
84.
85. 0:
86. begin isOut <= 1'b0; D1 <= 16'd0; i <= i + 1'b1; end
87.
88. 1: // Send Active command with Bank and Row address
89. begin rCMD <= _ACT; rBA <= iAddr[23:22]; rA <= iAddr[21:9]; i <= i + 1'b1; end
90.
91. 2: // wait TRCD 20ns
92. if( C1 == TRCD -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
93. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
94.
95. /********************/
96.
97. 3: // Send Read command and column address, pull up A10 to PR
98. begin rCMD <= _RD; rBA <= iAddr[23:22]; rA <= { 4'b0010, iAddr[8:0]}; i <= i + 1'b1; end
99.
100. 4: // wait CL 3 clock
101. if( C1 == CL -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
102. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
103.
104. /********************/
105.
106. 5: // Read Data
107. begin D1 <= S_DQ; i <= i + 1'b1; end
108.
109. /********************/
110.
111. 6: // wait TRP 20ns
112. if( C1 == TRP -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
113. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
114.
115. /********************/
116.
117. 7: // Generate done signal
118. begin isDone <= 1'b1; i <= i + 1'b1; end
119.
120. 8:
121. begin isDone <= 1'b0; i <= 4'd0; end
122.
123. endcase
以上內容為部分核心操作。第82行的if( iCall[2] ) 表示余下內容為讀操作。
124. else if( iCall[1] )
125. case( i )
126.
127. 0: // Send Precharge Command
128. begin rCMD <= _PR; i <= i + 1'b1; end
129.
130. 1: // wait TRP 20ns
131. if( C1 == TRP -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
132. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
133.
134. 2: // Send Auto Refresh Command
135. begin rCMD <= _AR; i <= i + 1'b1; end
136.
137. 3: // wait TRRC 63ns
138. if( C1 == TRRC -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
139. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
140.
141. 4: // Send Auto Refresh Command
142. begin rCMD <= _AR; i <= i + 1'b1; end
143.
144. 5: // wait TRRC 63ns
145. if( C1 == TRRC -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
146. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
147.
148. /********************/
149.
150. 6: // Generate done signal
151. begin isDone <= 1'b1; i <= i + 1'b1; end
152.
153. 7:
154. begin isDone <= 1'b0; i <= 4'd0; end
155.
156. endcase
以上內容為部分核心操作。第124行的if( iCall[1] ) 表示余下內容為刷新操作。
157. else if( iCall[0] )
158. case( i )
159.
160. 0: // delay 100us
161. if( C1 == T100US -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
162. else begin C1 <= C1 + 1'b1; end
163.
164. /********************/
165.
166. 1: // Send Precharge Command
167. begin rCMD <= _PR; { rBA, rA } <= 15'h3fff; i <= i + 1'b1; end
168.
169. 2: // wait TRP 20ns
170. if( C1 == TRP -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
171. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
172.
173. 3: // Send Auto Refresh Command
174. begin rCMD <= _AR; i <= i + 1'b1; end
175.
176. 4: // wait TRRC 63ns
177. if( C1 == TRRC -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
178. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
179.
180. 5: // Send Auto Refresh Command
181. begin rCMD <= _AR; i <= i + 1'b1; end
182.
183. 6: // wait TRRC 63ns
184. if( C1 == TRRC -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
185. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
186.
187. /********************/
188.
189. 7: // Send LMR Cmd. Burst Read & Write, 3'b010 mean CAS latecy = 3, Sequential, 1 burst length
190. begin rCMD <= _LMR; rBA <= 2'b11; rA <= { 3'd0, 1'b0, 2'd0, 3'b011, 1'b0, 3'b000 }; i <= i + 1'b1; end
191.
192. 8: // Send 2 nop CLK for tMRD
193. if( C1 == TMRD -1 ) begin C1 <= 14'd0; i <= i + 1'b1; end
194. else begin rCMD <= _NOP; C1 <= C1 + 1'b1; end
195.
196. /********************/
197.
198. 9: // Generate done signal
199. begin isDone <= 1'b1; i <= i + 1'b1; end
200.
201. 10:
202. begin isDone <= 1'b0; i <= 4'd0; end
203.
204. endcase
205.
以上內容為部分核心操作。第157行的if( iCall[0] ) 表示余下內容為初始化。
206. assign { S_CKE, S_NCS, S_NRAS, S_NCAS, S_NWE } = rCMD;
207. assign { S_BA, S_A } = { rBA, rA };
208. assign S_DQM = rDQM;
209. assign S_DQ = isOut ? iData : 16'hzzzz;
210. assign oDone = isDone;
211. assign oData = D1;
212.
213. endmodule
以上內容為相關的輸出驅動聲明,注意 iData直接驅動 S_DQ。
sdram_ctrlmod.v
圖18.10 SDRAM控制模塊的建模圖。
前面說過該模塊負責一些功能調用,此外該模塊也負責定時刷新的計算,具體內容我們還是來看代碼吧。
1. module sdram_ctrlmod
2. (
3. input CLOCK,
4. input RESET,
5. input [1:0]iCall, // [1]Write, [0]Read
6. output [1:0]oDone,
7. output [3:0]oCall,
8. input iDone
9. );
10. parameter WRITE = 4'd1, READ = 4'd4, REFRESH = 4'd7, INITIAL = 4'd8;
11. parameter TREF = 11'd1040;
12.
以上內容為相關的出入端聲明。第10行是各個入口地址的常量聲明,第11行則是定時刷新的周期——7.8125us。
13. reg [3:0]i;
14. reg [10:0]C1;
15. reg [3:0]isCall; //[3]Write [2]Read [1]A.Refresh [0]Initial
16. reg [1:0]isDone;
17.
18. always @ ( posedge CLOCK or negedge RESET )
19. if( !RESET )
20. begin
21. i <= INITIAL; // Initial SDRam at first
22. C1 <= 11'd0;
23. isCall <= 4'b0000;
24. isDone <= 2'b00;
25. end
以上內容為相關的寄存器聲明以及復位操作。第21行表示i首先會指向初始化。
26. else
27. case( i )
28.
29. 0: // IDLE
30. if( C1 >= TREF ) begin C1 <= 11'd0; i <= REFRESH; end
31. else if( iCall[1] ) begin C1 <= C1 + 1'b1; i <= WRITE; end
32. else if( iCall[0] ) begin C1 <= C1 + 1'b1; i <= READ; end
33. else begin C1 <= C1 + 1'b1; end
34.
35. /***********************/
36.
以上內容為部分核心操作。步驟0為待機狀態,期間第33行的C1會一直遞增,如果期間沒有任何讀寫操作,而且C1的計數內容也超過 TREF,那么C1會清零,i指向REFRESH(第30行)。反之,如果讀寫操作被使能,i指向相關的步驟入口,期間C1也會遞增以示步驟翻轉所用掉的時鍾。
37. 1: //Write
38. if( iDone ) begin isCall[3] <= 1'b0; C1 <= C1 + 1'b1; i <= i + 1'b1; end
39. else begin isCall[3] <= 1'b1; C1 <= C1 + 1'b1; end
40.
41. 2:
42. begin isDone[1] <= 1'b1; C1 <= C1 + 1'b1; i <= i + 1'b1; end
43.
44. 3:
45. begin isDone[1] <= 1'b0; C1 <= C1 + 1'b1; i <= 4’d0; end
46.
47. /***********************/
48.
以上內容為部分核心操作。步驟1~3是寫操作。步驟1表示,功能模塊反饋完成信號之前,C1會不停遞增。當完成信號接收到手,isCall[3]拉低,C1遞增,i也遞增。步驟2~3則是用來反饋寫操作的完成信號,期間C1也會遞增。
49. 4: // Read
50. if( iDone ) begin isCall[2] <= 1'b0; C1 <= C1 + 1'b1; i <= i + 1'b1; end
51. else begin isCall[2] <= 1'b1; C1 <= C1 + 1'b1; end
52.
53. 5:
54. begin isDone[0] <= 1'b1; C1 <= C1 + 1'b1; i <= i + 1'b1; end
55.
56. 6:
57. begin isDone[0] <= 1'b0; C1 <= C1 + 1'b1; i <= 4'd0; end
58.
59. /***********************/
60.
以上內容為部分核心操作。步驟4~6是讀操作。步驟4表示接收完成信號之前,isCall[2]會不停拉高,C1也會不停遞增 ... 直至接收完成信號,isCall[2]才會拉低,然而C1也會遞增。步驟5~6用反饋讀操作的完成信號。
61. 7: // Auto Refresh
62. if( iDone ) begin isCall[1] <= 1'b0; i <= 4'd0; end
63. else begin isCall[1] <= 1'b1; end
64.
65. /***********************/
66.
以上內容為部分核心操作。步驟7是刷新操作,接收完成信號之前 isCall[1] 會不停拉高,直至接收完成信號為止,isCall[1]才會拉低,然后i指向步驟0。
67. 8: // Initial
68. if( iDone ) begin isCall[0] <= 1'b0; i <= 4'd0; end
69. else begin isCall[0] <= 1'b1; end
70.
71. endcase
72.
73. assign oDone = isDone;
74. assign oCall = isCall;
75.
76. endmodule
以上內容為部分核心操作。步驟8用來執行初始化,接收完成信號之前,isCall[0]會不停拉高,直至接收完成信號為止,isCall[0]才會拉低,然后i指向步驟0。第73~74行則是相關的輸出驅動。整體而言,除了讀寫操作必須反饋完成信號給上層以外,其余的定期刷新還有初始化都是該內部操作,所以不用反饋完成信號。
sdram_basemod.v
內容的連線部署完全依照圖18.8。
1. module sdram_basemod
2. (
3. input CLOCK,
4. input RESET,
5.
6. output S_CKE, S_NCS, S_NRAS, S_NCAS, S_NWE,
7. output [1:0]S_BA,
8. output [12:0]S_A,
9. output [1:0]S_DQM,
10. inout [15:0]S_DQ,
11.
12. input [1:0]iCall,
13. output [1:0]oDone,
14. input [23:0]iAddr,
15. input [15:0]iData,
16. output [15:0]oData
17. );
以上內容為相關的出入端聲明,第5~10行是頂層信號,第12~16行是模塊左右兩邊的信號。
18. wire [3:0]CallU1; // [3]Refresh, [2]Read, [1]Write, [0]Initial
19.
20. sdram_ctrlmod U1
21. (
22. .CLOCK( CLOCK ),
23. .RESET( RESET ),
24. .iCall( iCall ), // < top ,[1]Write [0]Read
25. .oDone( oDone ), // > top ,[1]Write [0]Read
26. .oCall( CallU1 ), // > U2
27. .iDone( DoneU2 ) // < U2
28. );
29.
以上內容為控制模塊的實例化。
30. wire DoneU2;
31.
32. sdram_funcmod U2
33. (
34. .CLOCK( CLOCK ),
35. .RESET( RESET ),
36. .S_CKE( S_CKE ), // > top
37. .S_NCS( S_NCS ), // > top
38. .S_NRAS( S_NRAS ), // > top
39. .S_NCAS( S_NCAS ), // > top
40. .S_NWE( S_NWE ), // > top
41. .S_BA( S_BA ), // > top
42. .S_A( S_A ), // > top
43. .S_DQM( S_DQM ), // > top
44. .S_DQ( S_DQ ), // <> top
45. .iCall( CallU1 ), // < U1
46. .oDone( DoneU2 ), // > U1
47. .iAddr( iAddr ), // < top
48. .iData( iData ), // < top
49. .oData( oData ) // > top
50. );
51.
52. endmodule
以上內容為功能模塊的實例化。
sdram_demo.v
圖18.11 實驗十八的建模圖。
圖18.11是實驗十八的建模圖,其中sdram_demo包含PLL模塊,核心操作還有SDRAM基礎模塊。PLL模塊將50Mhz的時鍾倍頻為133Mhz而且左移210° 的CLOCK1,還有133Mhz的CLOCK2,它直接驅動S_CLK頂層信號。核心操作負責調用SDRAM基礎模塊,並且將讀寫內容經由TXD發送出去。SDRAM基礎模塊左邊的問答信號只有兩位,其中[1]為寫 [0]為讀,具體內容我們還是來看代碼吧。
1. module sdram_demo
2. (
3. input CLOCK,
4. input RESET,
5. output S_CLK,
6. output S_CKE, S_NCS, S_NRAS, S_NCAS, S_NWE,
7. output [12:0]S_A,
8. output [1:0]S_BA,
9. output [1:0]S_DQM,
10. inout [15:0]S_DQ,
11. output TXD
12. );
以上內容為相關的出入端聲明。
13. wire CLOCK1,CLOCK2;
14.
15. pll_module U1
16. (
17. .inclk0 ( CLOCK ), // 50Mhz
18. .c0 ( CLOCK1 ), // 133Mhz -210 degree phase
19. .c1 ( CLOCK2 ) // 133Mhz
20. );
21.
以上內容為PLL模塊的實例化,CLOCK1為133Mhz頻率並且左移210°,CLOCK2為133Mhz頻率,並且直接驅動 S_CLK。
22. wire [1:0]DoneU2; 23. wire [15:0]DataU2; 24. 25. sdram_basemod U2 26. ( 27. .CLOCK( CLOCK1 ), 28. .RESET( RESET ), 29. .S_CKE( S_CKE ), 30. .S_NCS( S_NCS ), 31. .S_NRAS( S_NRAS ), 32. .S_NCAS( S_NCAS ), 33. .S_NWE( S_NWE ), 34. .S_A( S_A ), 35. .S_BA( S_BA ), 36. .S_DQM( S_DQM ), 37. .S_DQ( S_DQ ), 38. .iCall( isCall ), 39. .oDone( DoneU2 ), 40. .iAddr( D1 ), 41. .iData( D2 ), 42. .oData( DataU2 ) 43. );
44.
以上內容為SDRAM基礎模塊的實例化,第40~41行表示 iAddr為D1驅動,iData為D2驅動。
45. parameter B115K2 = 11'd1157, TXFUNC = 6'd16;
46.
47. reg [5:0]i,Go;
48. reg [10:0]C1;
49. reg [23:0]D1;
50. reg [15:0]D2,D3;
51. reg [10:0]T;
52. reg [1:0]isCall;
53. reg rTXD;
54.
55. always @ ( posedge CLOCK1 or negedge RESET )
56. if( !RESET )
57. begin
58. i <= 6'd0;
59. Go <= 6'd0;
60. C1 <= 11'd0;
61. D1 <= 24'd0;
62. D2 <= 16'd0;
63. D3 <= 16'd0;
64. T <= 11'd0;
65. isCall <= 2'b00;
66. rTXD <= 1'b1;
67. end
以上內容為相關的寄存器以及復位操作。第45行是波特率為115200還有偽函數入口的常量聲明。
68. else
69. case( i )
70.
71. 0:
72. if( DoneU2[1] ) begin isCall[1] <= 1'b0; i <= i + 1'b1; end
73. else begin isCall[1] <= 1'b1; D1 <= 24'd0; D2 <= 16'hABCD; end
74.
75. 1:
76. if( DoneU2[0] ) begin D3 <= DataU2; isCall[0] <= 1'b0; i <= i + 1'b1; end
77. else begin D1 <= 24'd0; isCall[0] <= 1'b1; end
78.
79. 2:
80. begin T <= { 2'b11, D3[15:8], 1'b0 }; i <= TXFUNC; Go <= i + 1'b1; end
81.
82. 3:
83. begin T <= { 2'b11, D3[7:0], 1'b0 }; i <= TXFUNC; Go <= i + 1'b1; end
84.
85. 4:
86. i <= i;
87.
88. /******************************/
89.
以上內容為部分核心操作。步驟0將數據16’hABCD寫入地址0。步驟1從地址0讀出數據 16’hABCD,並且暫存至D3。步驟2先發送D3的高8位,步驟3則發送D3的低8位。步驟4發呆。
90. 16,17,18,19,20,21,22,23,24,25,26:
91. if( C1 == B115K2 -1 ) begin C1 <= 11'd0; i <= i + 1'b1; end
92. else begin rTXD <= T[i - 16]; C1 <= C1 + 1'b1; end
93.
94. 27:
95. i <= Go;
96.
97. endcase
98.
99. assign S_CLK = CLOCK2;
100. assign TXD = rTXD;
101.
102. endmodule
以上內容為部分核心操作。步驟16~27是發送一幀數據的偽函數。第99~100行則是相關的輸出驅動。綜合完畢並且下載程序,如果串口調試軟件出現 ABCD等兩字節數據,結果表示實驗成功。
細節一:完整的個體模塊
SDRAM基礎模塊已經就緒完畢。
細節二:其它時序參數
驅動SDRAM最大的收獲莫過於學習各種稀奇古怪的時序參數,雖然實驗十六的IIC,也有時序參數,但是前者好比一粒面包屑,后者則是一片面包,兩種時序參數有“體積”上的明確差距。筆者曾經說過,時序參數即時間要求有第一層與第二層之分,第一層時間要求正如IIC的時序參數,打得像面包一樣 ... 反之,第二層時間要求宛如SDRAM的時序參數,小得似面包屑一般。
SDRAM的時序參數除了 tRP,TRRC,TMRD,CAS Latency 等這些東西以外,它還有更為極為,而且不能控制的時序參數。更確切來說,這些時序參數都屬於物理因數的范圍 ... 難得有機會學習SDRAM,筆者就稍微聊聊它們吧。
圖18.12 時序參數①。
圖18.12是讀操作的部分時序,當CL得到滿足以后,數據就會被吐出來,其中:
TLZ(TLOZ)為 clock to data output in low-Z time。簡單來說,就是數據被出發沿吐出之前,必須經過的延遲時間。根據手冊,133Mhz為1ns。
TAC為 access time from clock。簡單來說就是有效時間。根據手冊,133Mhz為5.4ns
TOH為 data out hold time。簡單來說就是常見的 THOLD。根據手冊,133Mhz為2.5ns
圖18.13 時序參數②。
圖18.13是寫操作的部分時序圖,然而重點家伙就是當中 T××S或者T××H。一般××是指數據的屬性或者類別,不過S與H都有相同的意義,就是典型的TSETUP還有THOLD。筆者習慣稱呼它們為寄存器特性,因為只要任何一方得不到滿足,數據讀入寄存器就得不到保證。寄存器特性好比哥布林一樣,數量常常多到令人噴飯,如果一一分析會耗死爺爺不償命。
圖18.14 對外的理想時序。
為了用足一支竹竿掃盡一切,筆者才故意向將CLOCK1左移180° 測試手氣,看看SDRAM能不能讀出正確的結果,如果不是再追加位移或者減少位移以致修正,結果如圖18.14所示。一般而言,T××S或者T××H這些家伙都會得到滿足,然后乖乖就范。話雖如此,同學們還須注意,Verilog充其量只能滿足第二層的時間要求,卻不能涉及(解決)其中,我們往往只能依賴運氣與直覺。當然,我們可以借助靜態時序分析的力量去搞定一切,有興趣的朋友請看《工具篇I》。