Given a string S and a string T, count the number of distinct subsequences of S which equals T.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Example 1:
Input: S ="rabbbit"
, T ="rabbit" Output: 3
Explanation: As shown below, there are 3 ways you can generate "rabbit" from S. (The caret symbol ^ means the chosen letters)rabbbit
^^^^ ^^rabbbit
^^ ^^^^rabbbit
^^^ ^^^
Example 2:
Input: S ="babgbag"
, T ="bag" Output: 5
Explanation: As shown below, there are 5 ways you can generate "bag" from S. (The caret symbol ^ means the chosen letters)babgbag
^^ ^babgbag
^^ ^babgbag
^ ^^babgbag
^ ^^babgbag
^^^
看到有關字符串的子序列或者配准類的問題,首先應該考慮的就是用動態規划 Dynamic Programming 來求解,這個應成為條件反射。而所有 DP 問題的核心就是找出狀態轉移方程,想這道題就是遞推一個二維的 dp 數組,其中 dp[i][j] 表示s中范圍是 [0, i] 的子串中能組成t中范圍是 [0, j] 的子串的子序列的個數。下面我們從題目中給的例子來分析,這個二維 dp 數組應為:
Ø r a b b b i t Ø 1 1 1 1 1 1 1 1 r 0 1 1 1 1 1 1 1 a 0 0 1 1 1 1 1 1 b 0 0 0 1 2 3 3 3 b 0 0 0 0 1 3 3 3 i 0 0 0 0 0 0 3 3 t 0 0 0 0 0 0 0 3
首先,若原字符串和子序列都為空時,返回1,因為空串也是空串的一個子序列。若原字符串不為空,而子序列為空,也返回1,因為空串也是任意字符串的一個子序列。而當原字符串為空,子序列不為空時,返回0,因為非空字符串不能當空字符串的子序列。理清這些,二維數組 dp 的邊緣便可以初始化了,下面只要找出狀態轉移方程,就可以更新整個 dp 數組了。我們通過觀察上面的二維數組可以發現,當更新到 dp[i][j] 時,dp[i][j] >= dp[i][j - 1] 總是成立,再進一步觀察發現,當 T[i - 1] == S[j - 1] 時,dp[i][j] = dp[i][j - 1] + dp[i - 1][j - 1],若不等, dp[i][j] = dp[i][j - 1],所以,綜合以上,遞推式為:
dp[i][j] = dp[i][j - 1] + (T[i - 1] == S[j - 1] ? dp[i - 1][j - 1] : 0)
根據以上分析,可以寫出代碼如下:
class Solution { public: int numDistinct(string s, string t) { int m = s.size(), n = t.size(); vector<vector<long>> dp(n + 1, vector<long>(m + 1)); for (int j = 0; j <= m; ++j) dp[0][j] = 1; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= m; ++j) { dp[i][j] = dp[i][j - 1] + (t[i - 1] == s[j - 1] ? dp[i - 1][j - 1] : 0); } } return dp[n][m]; } };
Github 同步地址:
https://github.com/grandyang/leetcode/issues/115
參考資料:
https://leetcode.com/problems/distinct-subsequences/
https://leetcode.com/problems/distinct-subsequences/discuss/37327/Easy-to-understand-DP-in-Java