Given a binary tree containing digits from 0-9
only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3
which represents the number 123
.
Find the total sum of all root-to-leaf numbers.
Note: A leaf is a node with no children.
Example:
Input: [1,2,3] 1 / \ 2 3 Output: 25 Explanation: The root-to-leaf path1->2
represents the number12
. The root-to-leaf path1->3
represents the number13
. Therefore, sum = 12 + 13 =25
.
Example 2:
Input: [4,9,0,5,1] 4 / \ 9 0 / \ 5 1 Output: 1026 Explanation: The root-to-leaf path4->9->5
represents the number 495. The root-to-leaf path4->9->1
represents the number 491. The root-to-leaf path4->0
represents the number 40. Therefore, sum = 495 + 491 + 40 =1026
.
這道求根到葉節點數字之和的題跟之前的求 Path Sum 很類似,都是利用DFS遞歸來解,這道題由於不是單純的把各個節點的數字相加,而是每遇到一個新的子結點的數字,要把父結點的數字擴大10倍之后再相加。如果遍歷到葉結點了,就將當前的累加結果sum返回。如果不是,則對其左右子結點分別調用遞歸函數,將兩個結果相加返回即可,參見代碼如下:
解法一:
class Solution { public: int sumNumbers(TreeNode* root) { return sumNumbersDFS(root, 0); } int sumNumbersDFS(TreeNode* root, int sum) { if (!root) return 0; sum = sum * 10 + root->val; if (!root->left && !root->right) return sum; return sumNumbersDFS(root->left, sum) + sumNumbersDFS(root->right, sum); } };
我們也可以采用迭代的寫法,這里用的是先序遍歷的迭代寫法,使用棧來輔助遍歷,首先將根結點壓入棧,然后進行while循環,取出棧頂元素,如果是葉結點,那么將其值加入結果res。如果其右子結點存在,那么其結點值加上當前結點值的10倍,再將右子結點壓入棧。同理,若左子結點存在,那么其結點值加上當前結點值的10倍,再將左子結點壓入棧,是不是跟之前的 Path Sum 極其類似呢,參見代碼如下:
解法二:
class Solution { public: int sumNumbers(TreeNode* root) { if (!root) return 0; int res = 0; stack<TreeNode*> st{{root}}; while (!st.empty()) { TreeNode *t = st.top(); st.pop(); if (!t->left && !t->right) { res += t->val; } if (t->right) { t->right->val += t->val * 10; st.push(t->right); } if (t->left) { t->left->val += t->val * 10; st.push(t->left); } } return res; } };
類似題目:
參考資料:
https://leetcode.com/problems/sum-root-to-leaf-numbers/